File size: 4,046 Bytes
2a8ae3c
 
 
 
4a18f0c
 
 
 
2a8ae3c
 
 
 
 
 
4a18f0c
 
 
 
2a8ae3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a18f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8ae3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import os

# Force CPU usage if you're having GPU issues
os.environ['CUDA_VISIBLE_DEVICES'] = ''

# Load model and tokenizer
model_name = "gpt2-medium"  # You can change this to your fine-tuned model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Set up padding token
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id

# Sample prompts for different styles
style_prompts = {
    "Classic": "Here's a romantic pickup line: ",
    "Nerdy": "Here's a tech-related pickup line: ",
    "Flirty": "Here's a flirty pickup line: ",
    "Funny": "Here's a humorous pickup line: "
}

# Sample sentiment adjustments
sentiment_adjustments = {
    "Sweet": " Make it sweet and genuine.",
    "Funny": " Make it lighthearted and humorous.",
    "Sarcastic": " Add a touch of playful sarcasm."
}

def generate_pickup_line(style, sentiment, temperature=0.7, max_length=50):
    """Generate a pickup line based on selected style and sentiment."""
    try:
        prompt = style_prompts[style] + sentiment_adjustments[sentiment]
        
        # Set up the model inputs
        inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
        
        # Generate text
        with torch.no_grad():
            outputs = model.generate(
                inputs["input_ids"],
                max_length=max_length,
                temperature=temperature,
                num_return_sequences=1,
                pad_token_id=tokenizer.pad_token_id,
                do_sample=True,
                no_repeat_ngram_size=2
            )
        
        # Decode and clean up the generated text
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        pickup_line = generated_text.replace(prompt, "").strip()
        
        return pickup_line if pickup_line else "Please try again!"
    except Exception as e:
        return f"An error occurred. Please try again! Error: {str(e)}"

def copy_to_clipboard(text):
    """Copy the generated pickup line to clipboard."""
    return text

# Create the Gradio interface
def create_interface():
    with gr.Blocks(css="footer {visibility: hidden}") as interface:
        gr.Markdown("# πŸ’˜ AI Pickup Line Generator")
        gr.Markdown("Generate creative pickup lines with different styles and moods!")
        
        with gr.Row():
            with gr.Column():
                style = gr.Dropdown(
                    choices=list(style_prompts.keys()),
                    value="Classic",
                    label="Pickup Line Style"
                )
                sentiment = gr.Dropdown(
                    choices=list(sentiment_adjustments.keys()),
                    value="Sweet",
                    label="Tone"
                )
                generate_btn = gr.Button("Generate Pickup Line πŸ’«", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(
                    label="Your Generated Pickup Line",
                    lines=3,
                    interactive=False
                )
                copy_btn = gr.Button("Copy to Clipboard πŸ“‹")
        
        # Handle generation
        generate_btn.click(
            fn=generate_pickup_line,
            inputs=[style, sentiment],
            outputs=output
        )
        
        # Handle copying
        copy_btn.click(
            fn=copy_to_clipboard,
            inputs=output,
            outputs=None
        )
        
        gr.Markdown("""
        ### Tips:
        - Try different styles and tones to get varied results
        - Click 'Generate' multiple times to get different lines
        - Use the copy button to easily share your favorite lines
        """)
    
    return interface

# Launch the interface
if __name__ == "__main__":
    interface = create_interface()
    interface.launch()