Spaces:
Runtime error
Runtime error
Prakhar618
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
|
7 |
def predict(text):
|
8 |
# Convert test dataframe to Hugging Face dataset
|
9 |
-
test_dataset = Dataset.from_pandas(text)
|
10 |
|
11 |
# Apply the tokenization function to the train dataset
|
12 |
-
|
13 |
predictions, label_probs, _ = trainer.predict(train_dataset1)
|
14 |
y_pred = np.argmax(predictions, axis=1)
|
15 |
return y_pred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
18 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
from datasets import Dataset, DatasetDict
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments
|
7 |
|
8 |
+
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
|
9 |
+
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
|
10 |
|
11 |
|
12 |
def predict(text):
|
13 |
# Convert test dataframe to Hugging Face dataset
|
14 |
+
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
|
15 |
|
16 |
# Apply the tokenization function to the train dataset
|
17 |
+
train_dataset1 = test_dataset.map(tokenize_function, batched=True,)
|
18 |
predictions, label_probs, _ = trainer.predict(train_dataset1)
|
19 |
y_pred = np.argmax(predictions, axis=1)
|
20 |
return y_pred
|
21 |
+
|
22 |
+
|
23 |
+
def tokenize_function(examples):
|
24 |
+
return tokenizer(examples['text'], padding=True, truncation=True,
|
25 |
+
max_length=256)
|
26 |
+
|
27 |
+
test_args = TrainingArguments(
|
28 |
+
do_train=False,
|
29 |
+
do_predict=True,
|
30 |
+
per_device_eval_batch_size = 2
|
31 |
+
|
32 |
+
)
|
33 |
+
trainer = Trainer(
|
34 |
+
model=model,
|
35 |
+
args=test_args,
|
36 |
+
)
|
37 |
|
38 |
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
39 |
iface.launch()
|