Spaces:
Running
Running
made code
Browse files
app.py
CHANGED
@@ -1,63 +1,194 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import ctranslate2
|
4 |
from transformers import AutoTokenizer
|
5 |
from huggingface_hub import snapshot_download
|
6 |
-
from codeexecutor import
|
7 |
-
|
|
|
8 |
# Define the model and tokenizer loading
|
9 |
-
model_prompt = "
|
10 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
11 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
12 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
13 |
-
iterations=10
|
14 |
|
15 |
# Function to generate predictions using the model
|
16 |
def get_prediction(question):
|
17 |
input_text = model_prompt + question
|
18 |
input_tokens = tokenizer.tokenize(input_text)
|
19 |
-
results = generator.generate_batch(
|
|
|
|
|
|
|
|
|
|
|
20 |
output_tokens = results[0].sequences[0]
|
21 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
22 |
return predicted_answer
|
23 |
|
24 |
-
# Function to
|
25 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
all_predictions = []
|
27 |
-
|
|
|
|
|
28 |
for _ in range(num_iterations):
|
29 |
prediction = get_prediction(question)
|
30 |
-
answer=
|
31 |
all_predictions.append(prediction)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Gradio interface for user input and output
|
38 |
def gradio_interface(question, correct_answer):
|
39 |
-
|
40 |
-
return
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
# Gradio app setup
|
49 |
interface = gr.Interface(
|
50 |
fn=gradio_interface,
|
51 |
inputs=[
|
52 |
-
gr.Textbox(label="Math Question"),
|
53 |
-
gr.Textbox(label="Correct Answer"),
|
54 |
],
|
55 |
outputs=[
|
56 |
-
gr.
|
|
|
|
|
57 |
],
|
58 |
-
title="Math Question Solver",
|
59 |
-
description="Enter a math question to get the model
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
interface.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import ctranslate2
|
3 |
from transformers import AutoTokenizer
|
4 |
from huggingface_hub import snapshot_download
|
5 |
+
from codeexecutor import get_majority_vote
|
6 |
+
import re
|
7 |
+
import os
|
8 |
# Define the model and tokenizer loading
|
9 |
+
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
|
10 |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
11 |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
12 |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
13 |
+
iterations = 10
|
14 |
|
15 |
# Function to generate predictions using the model
|
16 |
def get_prediction(question):
|
17 |
input_text = model_prompt + question
|
18 |
input_tokens = tokenizer.tokenize(input_text)
|
19 |
+
results = generator.generate_batch(
|
20 |
+
[input_tokens],
|
21 |
+
max_length=512,
|
22 |
+
sampling_temperature=0.7,
|
23 |
+
sampling_topk=40,
|
24 |
+
)
|
25 |
output_tokens = results[0].sequences[0]
|
26 |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
27 |
return predicted_answer
|
28 |
|
29 |
+
# Function to parse the prediction to extract the answer and steps
|
30 |
+
def parse_prediction(prediction):
|
31 |
+
lines = prediction.strip().split('\n')
|
32 |
+
answer = None
|
33 |
+
steps = []
|
34 |
+
for line in lines:
|
35 |
+
# Check for "Answer:" or "answer:"
|
36 |
+
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
|
37 |
+
if match:
|
38 |
+
answer = match.group(1).strip()
|
39 |
+
else:
|
40 |
+
steps.append(line)
|
41 |
+
if answer is None:
|
42 |
+
# If no "Answer:" found, assume last line is the answer
|
43 |
+
answer = lines[-1].strip()
|
44 |
+
steps = lines[:-1]
|
45 |
+
steps_text = '\n'.join(steps).strip()
|
46 |
+
return answer, steps_text
|
47 |
+
|
48 |
+
# Function to perform majority voting and get steps
|
49 |
+
def majority_vote_with_steps(question, num_iterations=10):
|
50 |
all_predictions = []
|
51 |
+
all_answers = []
|
52 |
+
steps_list = []
|
53 |
+
|
54 |
for _ in range(num_iterations):
|
55 |
prediction = get_prediction(question)
|
56 |
+
answer, steps = parse_prediction(prediction)
|
57 |
all_predictions.append(prediction)
|
58 |
+
all_answers.append(answer)
|
59 |
+
steps_list.append(steps)
|
60 |
+
|
61 |
+
# Get the majority voted answer
|
62 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
63 |
+
|
64 |
+
# Find the steps corresponding to the majority voted answer
|
65 |
+
for i, ans in enumerate(all_answers):
|
66 |
+
if ans == majority_voted_ans:
|
67 |
+
steps_solution = steps_list[i]
|
68 |
+
break
|
69 |
+
else:
|
70 |
+
steps_solution = "No steps found"
|
71 |
+
|
72 |
+
return majority_voted_ans, steps_solution
|
73 |
|
74 |
# Gradio interface for user input and output
|
75 |
def gradio_interface(question, correct_answer):
|
76 |
+
final_answer, steps_solution = majority_vote_with_steps(question, iterations)
|
77 |
+
return question, final_answer, steps_solution, correct_answer
|
78 |
+
|
79 |
+
# Custom CSS for enhanced design (unchanged)
|
80 |
+
custom_css = """
|
81 |
+
body {
|
82 |
+
background-color: #fafafa;
|
83 |
+
font-family: 'Open Sans', sans-serif;
|
84 |
+
}
|
85 |
+
.gradio-container {
|
86 |
+
background-color: #ffffff;
|
87 |
+
border: 3px solid #007acc;
|
88 |
+
border-radius: 15px;
|
89 |
+
padding: 20px;
|
90 |
+
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
|
91 |
+
max-width: 800px;
|
92 |
+
margin: 50px auto;
|
93 |
+
}
|
94 |
+
h1 {
|
95 |
+
font-family: 'Poppins', sans-serif;
|
96 |
+
color: #007acc;
|
97 |
+
font-weight: bold;
|
98 |
+
font-size: 32px;
|
99 |
+
text-align: center;
|
100 |
+
margin-bottom: 20px;
|
101 |
+
}
|
102 |
+
p {
|
103 |
+
font-family: 'Roboto', sans-serif;
|
104 |
+
font-size: 18px;
|
105 |
+
color: #333;
|
106 |
+
text-align: center;
|
107 |
+
margin-bottom: 15px;
|
108 |
}
|
109 |
+
input, textarea {
|
110 |
+
font-family: 'Montserrat', sans-serif;
|
111 |
+
font-size: 16px;
|
112 |
+
padding: 10px;
|
113 |
+
border: 2px solid #007acc;
|
114 |
+
border-radius: 10px;
|
115 |
+
background-color: #f1f8ff;
|
116 |
+
margin-bottom: 15px;
|
117 |
+
}
|
118 |
+
#math_question, #correct_answer {
|
119 |
+
font-size: 20px;
|
120 |
+
font-family: 'Poppins', sans-serif;
|
121 |
+
font-weight: 500px;
|
122 |
+
color: #007acc;
|
123 |
+
margin-bottom: 5px;
|
124 |
+
display: inline-block;
|
125 |
+
}
|
126 |
+
|
127 |
+
textarea {
|
128 |
+
min-height: 150px;
|
129 |
+
}
|
130 |
+
.gr-button-primary {
|
131 |
+
background-color: #007acc !important;
|
132 |
+
color: white !important;
|
133 |
+
border-radius: 10px !important;
|
134 |
+
font-size: 18px !important;
|
135 |
+
font-weight: bold !important;
|
136 |
+
padding: 10px 20px !important;
|
137 |
+
font-family: 'Montserrat', sans-serif !important;
|
138 |
+
transition: background-color 0.3s ease !important;
|
139 |
+
}
|
140 |
+
.gr-button-primary:hover {
|
141 |
+
background-color: #005f99 !important;
|
142 |
+
}
|
143 |
+
.gr-button-secondary {
|
144 |
+
background-color: #f44336 !important;
|
145 |
+
color: white !important;
|
146 |
+
border-radius: 10px !important;
|
147 |
+
font-size: 18px !important;
|
148 |
+
font-weight: bold !important;
|
149 |
+
padding: 10px 20px !important;
|
150 |
+
font-family: 'Montserrat', sans-serif !important;
|
151 |
+
transition: background-color 0.3s ease !important;
|
152 |
+
}
|
153 |
+
.gr-button-secondary:hover {
|
154 |
+
background-color: #c62828 !important;
|
155 |
+
}
|
156 |
+
.gr-output {
|
157 |
+
background-color: #e0f7fa;
|
158 |
+
border: 2px solid #007acc;
|
159 |
+
border-radius: 10px;
|
160 |
+
padding: 15px;
|
161 |
+
font-size: 16px;
|
162 |
+
font-family: 'Roboto', sans-serif;
|
163 |
+
font-weight: bold;
|
164 |
+
color: #00796b;
|
165 |
+
}
|
166 |
+
"""
|
167 |
+
|
168 |
+
# Define the directory path
|
169 |
+
flagging_dir = "./flagged_data"
|
170 |
+
|
171 |
+
# Create the directory if it doesn't exist
|
172 |
+
if not os.path.exists(flagging_dir):
|
173 |
+
os.makedirs(flagging_dir)
|
174 |
|
175 |
+
# Gradio app setup with flagging
|
176 |
interface = gr.Interface(
|
177 |
fn=gradio_interface,
|
178 |
inputs=[
|
179 |
+
gr.Textbox(label="π§ Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
|
|
|
180 |
],
|
181 |
outputs=[
|
182 |
+
gr.Textbox(label="Majority-Voted Answer", interactive=False), # Non-editable
|
183 |
+
gr.Textbox(label="Steps to Solve", interactive=False), # Non-editable
|
184 |
+
gr.Textbox(label="β
Correct Solution", interactive=True), # Editable textbox for correct solution
|
185 |
],
|
186 |
+
title="π’ Math Question Solver",
|
187 |
+
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
|
188 |
+
css=custom_css, # Apply custom CSS
|
189 |
+
flagging_dir=flagging_dir, # Directory to save flagged data
|
190 |
+
allow_flagging="auto" # Allow users to auto flag data
|
191 |
)
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
+
interface.launch()
|
temp.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import ctranslate2
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from codeexecutor import get_majority_vote
|
6 |
+
import re
|
7 |
+
|
8 |
+
# Define the model and tokenizer loading
|
9 |
+
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
11 |
+
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
12 |
+
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
13 |
+
iterations = 10
|
14 |
+
|
15 |
+
# Function to generate predictions using the model
|
16 |
+
def get_prediction(question):
|
17 |
+
input_text = model_prompt + question
|
18 |
+
input_tokens = tokenizer.tokenize(input_text)
|
19 |
+
results = generator.generate_batch(
|
20 |
+
[input_tokens],
|
21 |
+
max_length=512,
|
22 |
+
sampling_temperature=0.7,
|
23 |
+
sampling_topk=40,
|
24 |
+
)
|
25 |
+
output_tokens = results[0].sequences[0]
|
26 |
+
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
27 |
+
return predicted_answer
|
28 |
+
|
29 |
+
# Function to parse the prediction to extract the answer and steps
|
30 |
+
def parse_prediction(prediction):
|
31 |
+
lines = prediction.strip().split('\n')
|
32 |
+
answer = None
|
33 |
+
steps = []
|
34 |
+
for line in lines:
|
35 |
+
# Check for "Answer:" or "answer:"
|
36 |
+
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
|
37 |
+
if match:
|
38 |
+
answer = match.group(1).strip()
|
39 |
+
else:
|
40 |
+
steps.append(line)
|
41 |
+
if answer is None:
|
42 |
+
# If no "Answer:" found, assume last line is the answer
|
43 |
+
answer = lines[-1].strip()
|
44 |
+
steps = lines[:-1]
|
45 |
+
steps_text = '\n'.join(steps).strip()
|
46 |
+
return answer, steps_text
|
47 |
+
|
48 |
+
# Function to perform majority voting and get steps
|
49 |
+
def majority_vote_with_steps(question, num_iterations=10):
|
50 |
+
all_predictions = []
|
51 |
+
all_answers = []
|
52 |
+
steps_list = []
|
53 |
+
|
54 |
+
for _ in range(num_iterations):
|
55 |
+
prediction = get_prediction(question)
|
56 |
+
answer, steps = parse_prediction(prediction)
|
57 |
+
all_predictions.append(prediction)
|
58 |
+
all_answers.append(answer)
|
59 |
+
steps_list.append(steps)
|
60 |
+
|
61 |
+
# Get the majority voted answer
|
62 |
+
majority_voted_ans = get_majority_vote(all_answers)
|
63 |
+
|
64 |
+
# Find the steps corresponding to the majority voted answer
|
65 |
+
for i, ans in enumerate(all_answers):
|
66 |
+
if ans == majority_voted_ans:
|
67 |
+
steps_solution = steps_list[i]
|
68 |
+
break
|
69 |
+
else:
|
70 |
+
steps_solution = "No steps found"
|
71 |
+
|
72 |
+
return majority_voted_ans, steps_solution
|
73 |
+
|
74 |
+
# Gradio interface for user input and output
|
75 |
+
def gradio_interface(question, correct_answer):
|
76 |
+
final_answer, steps_solution = majority_vote_with_steps(question, iterations)
|
77 |
+
return {
|
78 |
+
"Question": question,
|
79 |
+
"Majority-Voted Answer": final_answer,
|
80 |
+
"Steps to Solve": steps_solution,
|
81 |
+
"Correct Solution": correct_answer
|
82 |
+
}
|
83 |
+
|
84 |
+
# Custom CSS for enhanced design (unchanged)
|
85 |
+
custom_css = """
|
86 |
+
body {
|
87 |
+
background-color: #fafafa;
|
88 |
+
font-family: 'Open Sans', sans-serif;
|
89 |
+
}
|
90 |
+
.gradio-container {
|
91 |
+
background-color: #ffffff;
|
92 |
+
border: 3px solid #007acc;
|
93 |
+
border-radius: 15px;
|
94 |
+
padding: 20px;
|
95 |
+
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
|
96 |
+
max-width: 800px;
|
97 |
+
margin: 50px auto;
|
98 |
+
}
|
99 |
+
h1 {
|
100 |
+
font-family: 'Poppins', sans-serif;
|
101 |
+
color: #007acc;
|
102 |
+
font-weight: bold;
|
103 |
+
font-size: 32px;
|
104 |
+
text-align: center;
|
105 |
+
margin-bottom: 20px;
|
106 |
+
}
|
107 |
+
p {
|
108 |
+
font-family: 'Roboto', sans-serif;
|
109 |
+
font-size: 18px;
|
110 |
+
color: #333;
|
111 |
+
text-align: center;
|
112 |
+
margin-bottom: 15px;
|
113 |
+
}
|
114 |
+
input, textarea {
|
115 |
+
font-family: 'Montserrat', sans-serif;
|
116 |
+
font-size: 16px;
|
117 |
+
padding: 10px;
|
118 |
+
border: 2px solid #007acc;
|
119 |
+
border-radius: 10px;
|
120 |
+
background-color: #f1f8ff;
|
121 |
+
margin-bottom: 15px;
|
122 |
+
}
|
123 |
+
#math_question, #correct_answer {
|
124 |
+
font-size: 20px;
|
125 |
+
font-family: 'Poppins', sans-serif;
|
126 |
+
font-weight: 500px;
|
127 |
+
color: #007acc;
|
128 |
+
margin-bottom: 5px;
|
129 |
+
display: inline-block;
|
130 |
+
}
|
131 |
+
|
132 |
+
textarea {
|
133 |
+
min-height: 150px;
|
134 |
+
}
|
135 |
+
.gr-button-primary {
|
136 |
+
background-color: #007acc !important;
|
137 |
+
color: white !important;
|
138 |
+
border-radius: 10px !important;
|
139 |
+
font-size: 18px !important;
|
140 |
+
font-weight: bold !important;
|
141 |
+
padding: 10px 20px !important;
|
142 |
+
font-family: 'Montserrat', sans-serif !important;
|
143 |
+
transition: background-color 0.3s ease !important;
|
144 |
+
}
|
145 |
+
.gr-button-primary:hover {
|
146 |
+
background-color: #005f99 !important;
|
147 |
+
}
|
148 |
+
.gr-button-secondary {
|
149 |
+
background-color: #f44336 !important;
|
150 |
+
color: white !important;
|
151 |
+
border-radius: 10px !important;
|
152 |
+
font-size: 18px !important;
|
153 |
+
font-weight: bold !important;
|
154 |
+
padding: 10px 20px !important;
|
155 |
+
font-family: 'Montserrat', sans-serif !important;
|
156 |
+
transition: background-color 0.3s ease !important;
|
157 |
+
}
|
158 |
+
.gr-button-secondary:hover {
|
159 |
+
background-color: #c62828 !important;
|
160 |
+
}
|
161 |
+
.gr-output {
|
162 |
+
background-color: #e0f7fa;
|
163 |
+
border: 2px solid #007acc;
|
164 |
+
border-radius: 10px;
|
165 |
+
padding: 15px;
|
166 |
+
font-size: 16px;
|
167 |
+
font-family: 'Roboto', sans-serif;
|
168 |
+
font-weight: bold;
|
169 |
+
color: #00796b;
|
170 |
+
}
|
171 |
+
"""
|
172 |
+
|
173 |
+
# Gradio app setup
|
174 |
+
interface = gr.Interface(
|
175 |
+
fn=gradio_interface,
|
176 |
+
inputs=[
|
177 |
+
gr.Textbox(label="π§ Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
|
178 |
+
|
179 |
+
],
|
180 |
+
outputs=[
|
181 |
+
gr.Textbox(label="Majority-Voted Answer", interactive=False), # Non-editable
|
182 |
+
gr.Textbox(label="Steps to Solve", interactive=False), # Non-editable
|
183 |
+
gr.Textbox(label="β
Correct Solution", interactive=True), # Editable textbox for correct solution
|
184 |
+
],
|
185 |
+
title="π’ Math Question Solver",
|
186 |
+
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
|
187 |
+
css=custom_css # Apply custom CSS
|
188 |
+
)
|
189 |
+
|
190 |
+
if _name_ == "_main_":
|
191 |
+
interface.launch()
|