Spaces:
Running
Running
import os | |
import torch | |
import gradio as gr | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import GenerationConfig, AutoModelForCausalLM, AutoTokenizer | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
class PersianRAG: | |
def __init__(self, knowledge, embedding_model='LABSE', llm_model="MehdiHosseiniMoghadam/AVA-Mistral-7B-V2", | |
device='cuda', retrieved_docs=3): | |
self.device = device | |
self.retrieved_docs = retrieved_docs | |
self.answer_df = (knowledge['Answer']) | |
self.embedder = SentenceTransformer(embedding_model) | |
self.question_embeddings = self.embedder.encode((knowledge['Question']), show_progress_bar=True, | |
convert_to_tensor=True) | |
self.model = AutoModelForCausalLM.from_pretrained(llm_model, torch_dtype=torch.float16, device_map="auto") | |
self.tokenizer = AutoTokenizer.from_pretrained(llm_model) | |
self.generation_config = GenerationConfig( | |
do_sample=True, | |
top_k=1, | |
temperature=0.99, | |
max_new_tokens=900, | |
pad_token_id=self.tokenizer.eos_token_id | |
) | |
def rag(self, query): | |
ans = {} | |
question_embedding = self.embedder.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(question_embedding, self.question_embeddings) | |
hits = hits[0] | |
for hit in hits[0:self.retrieved_docs]: | |
ans[hit['corpus_id']] = self.answer_df[hit['corpus_id']] | |
ans = pd.DataFrame(list(ans.items()), columns=['id', 'res']) | |
prompt = f''' | |
با توجه به شرایط زیر به این سوال پاسخ دهید: | |
{query}, | |
متن نوشته: | |
{ans['res'][0]} - {ans['res'][1]} - {ans['res'][2]} | |
''' | |
prompt = f"### Human:{prompt}\n### Assistant:" | |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device) | |
outputs = self.model.generate(**inputs, generation_config=self.generation_config) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Function to load CSV and initialize PersianRAG | |
def init_rag(knowledge_file, embedding_model, llm_model, device, retrieved_docs): | |
knowledge = pd.read_csv(knowledge_file) | |
rag_system = PersianRAG(knowledge, embedding_model=embedding_model, llm_model=llm_model, device=device, | |
retrieved_docs=retrieved_docs) | |
return rag_system | |
# Function to handle querying | |
def query_rag(rag_system, query): | |
return rag_system.rag(query) | |
# Gradio interface to upload CSV and configure RAG system | |
def rag_interface(knowledge_file, query, embedding_model, llm_model, device, retrieved_docs): | |
rag_system = init_rag(knowledge_file, embedding_model, llm_model, device, retrieved_docs) | |
return query_rag(rag_system, query) | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=rag_interface, | |
inputs=[ | |
gr.File(label="Upload Knowledge Base CSV"), | |
gr.Textbox(label="Enter your query"), | |
gr.Dropdown(choices=["LABSE", "paraphrase-multilingual-mpnet-base-v2"], value="LABSE", label="Embedding Model"), | |
gr.Textbox(value="MehdiHosseiniMoghadam/AVA-Mistral-7B-V2", label="LLM Model Name"), | |
gr.Dropdown(choices=["cuda", "cpu"], value="cuda", label="Device"), | |
gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Number of Retrieved Documents")], | |
outputs="text", | |
title="Persian RAG System", | |
description="Upload a CSV file as the knowledge base, ask a question, and get an answer.") | |
# Launch the Gradio interface | |
interface.launch(debug=True) | |