Spaces:
Runtime error
Runtime error
File size: 20,916 Bytes
96ee597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
"""A2S model definition.
Copyright PolyAI Limited.
"""
from typing import Union
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from einops import rearrange
import constants as c
from modules import masking_logic
from modules.conformer import Conformer
from modules.masking_logic import (State, mask_by_random_topk,
sample_from_logits, state_init)
from utils import load_checkpoint
class Pheme(pl.LightningModule):
def __init__(self, hp):
super().__init__()
self.hp = hp
self.model = TTSConformer(hp)
self.cross_entropy = nn.CrossEntropyLoss(
label_smoothing=self.hp.label_smoothing,
ignore_index=self.hp.n_codes
)
if self.hp.pretrained_path:
self.load()
else:
self.apply(self.init_weights)
if self.hp.only_inference:
self.model.eval()
self.save_hyperparameters()
def load(self):
state_dict = load_checkpoint(self.hp.pretrained_path)
print(f"Parameters loaded from {self.hp.pretrained_path}")
self.load_state_dict(state_dict, strict=True)
def init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
module._fill_padding_idx_with_zero()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
def configure_optimizers(self):
optimizer_adam = optim.AdamW(
self.parameters(), lr=self.hp.lr,
betas=(self.hp.adam_beta1, self.hp.adam_beta2))
# Learning rate scheduler
num_training_steps = self.hp.training_step
num_warmup_steps = self.hp.warmup_step
num_flat_steps = int(self.hp.optim_flat_percent * num_training_steps)
def lambda_lr(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step < (num_warmup_steps + num_flat_steps):
return 1.0
return max(
0.0,
float(num_training_steps - current_step)
/ float(
max(1, num_training_steps - (num_warmup_steps + num_flat_steps)) # noqa
),
)
scheduler_adam = {
"scheduler": optim.lr_scheduler.LambdaLR(
optimizer_adam, lambda_lr),
"interval": "step",
}
return [optimizer_adam], [scheduler_adam]
def top_k_accuracy(self, y_true, y_pred_probabilities, k):
_, sorted_indices = torch.sort(y_pred_probabilities, descending=True)
# Get the top-k predictions
top_k_indices = sorted_indices[:, :k]
expanded_y_true = y_true.unsqueeze(1).expand_as(top_k_indices)
# Check if true labels exist in top-k predictions
hits = torch.sum(torch.eq(top_k_indices, expanded_y_true))
accuracy = hits.item() / (len(y_true) + 1e-7)
return accuracy
def training_step(self, batch, batch_idx):
# Sample training level
rvq_level = torch.randint(
0, min(self.hp.first_n_lvls, self.hp.n_cluster_groups),(1,)).item()
target, chosen_tokens, _, _ = self.model(
batch["tts_quantize_input"], rvq_level, batch["semantic_tokens"],
batch["quantization_lengths"],
speaker_emb=batch["speaker"],
min_seq_length=batch["quantization_lengths"].min().item())
# Mask targets and labels
mask = chosen_tokens
target = target[mask]
labels = batch["tts_quantize_input"][:, :, rvq_level]
labels = labels[mask]
loss = self.cross_entropy(target, labels)
acc = (target.argmax(-1) == labels).float().mean()
self.log("train/loss", loss, on_step=True, prog_bar=True)
self.log("train/acc", acc, on_step=True, prog_bar=True)
self.log(
f"train/acc_lvl_{rvq_level}", acc, on_step=True, prog_bar=False)
return loss
def validation_step(self, batch, batch_idx, dataloader_idx=0):
speaker_emb = batch["speaker"]
acoustic_tokens = batch["tts_quantize_input"]
semantic_tokens = batch["semantic_tokens"]
if self.hp.only_inference:
self.inference(
acoustic_tokens, semantic_tokens, self.hp.first_n_lvls)
else:
rvq_level = torch.randint(
0, min(self.hp.first_n_lvls, self.hp.n_cluster_groups),(1,)
).item()
# FIXME: edge case
if len(semantic_tokens.shape) == 3:
semantic_tokens = rearrange(semantic_tokens, "B 1 T -> B T")
target, chosen_tokens, _, _ = self.model(
acoustic_tokens, rvq_level, semantic_tokens,
torch.tensor([acoustic_tokens.shape[1]]).to(self.device),
speaker_emb=speaker_emb,
min_seq_length=acoustic_tokens.shape[1]
)
target = target[chosen_tokens]
labels = acoustic_tokens[:, :, rvq_level][chosen_tokens]
loss = self.cross_entropy(target, labels)
acc = (target.argmax(-1) == labels).float().mean()
acc_5 = self.top_k_accuracy(labels, target, 5)
self.log(
f"val/dataset_{dataloader_idx}/loss",
loss,
on_epoch=True,
logger=True,
add_dataloader_idx=False,
)
self.log(
f"val/dataset_{dataloader_idx}/acc_lvl",
acc,
on_epoch=True,
logger=True,
add_dataloader_idx=False,
)
self.log(
f"val/dataset_{dataloader_idx}/acc_lvl_{rvq_level}",
acc,
on_epoch=True,
logger=True,
add_dataloader_idx=False,
)
self.log(
f"val/dataset_{dataloader_idx}/acc_top_5",
acc_5,
on_epoch=True,
logger=True,
add_dataloader_idx=False,
)
self.log(
f"val/dataset_{dataloader_idx}/acc_top_5_lvl_{rvq_level}",
acc_5,
on_epoch=True,
logger=True,
add_dataloader_idx=False,
)
def compute_stats(self, logits, labels, mask_ratio=0, rvq_level=0):
acc = (logits.argmax(-1) == labels).float().mean()
acc_5 = self.top_k_accuracy(labels, logits, 5)
acc_10 = self.top_k_accuracy(labels, logits, 10)
idx = torch.randperm(logits.shape[0])
logits_shuffled = logits[idx]
random = self.top_k_accuracy(labels, logits_shuffled, 10)
print(f"Mask ratio: {mask_ratio}, Level {rvq_level}: acc {acc},"
f"acc 5 {acc_5}, acc 10 {acc_10}, quasi random {random}")
class TTSConformer(pl.LightningModule):
def __init__(self, hp):
super().__init__()
self.hp = hp
self.padding_id = self.hp.n_codes
additional_codes = [c.PAD, c.SPKR_1, c.SPKR_2]
self.embedding = nn.ModuleList(
[
nn.Embedding(
self.hp.n_codes + len(additional_codes),
self.hp.hidden_size,
padding_idx=self.padding_id)
for _ in range(self.hp.n_cluster_groups)
]
)
# Additional modules
self.semantic_embedding = nn.Embedding(
self.hp.n_semantic_codes + len(additional_codes),
self.hp.hidden_size,
padding_idx=self.padding_id)
if self.hp.use_spkr_emb:
self.spkr_linear = nn.Linear(c.SPKR_EMB_SIZE, self.hp.hidden_size)
self.conformer = Conformer(
dim=self.hp.hidden_size,
num_layers=self.hp.enc_nlayers,
heads=self.hp.nheads,
dim_head=64,
ff_mult=4, # 512*4=2048
conv_expansion_factor=2,
conv_kernel_size=self.hp.depthwise_conv_kernel_size,
attn_dropout=self.hp.dropout,
ff_dropout=self.hp.dropout,
conv_dropout=self.hp.dropout,
attn_flash=True,
t5_rel_pos_bias=False
)
self.heads = nn.ModuleList(
[
nn.Linear(
self.hp.hidden_size,
self.hp.n_codes + len(additional_codes)
)
for _ in range(self.hp.n_cluster_groups)
]
)
def build_mask_from_lengths(self, length, max_len=None):
max_len = max_len or length.max().item()
mask = torch.arange(
max_len, device=length.device)[None, :] >= length[:, None]
return mask.bool()
@torch.no_grad()
def create_mask(
self, B, T, lengths, mask_ratio=None, start_t=None,
min_seq_length=None
):
# 1. Define the random length of condition tokens given the shortest
# audio in the batch
if start_t is None:
start_t = torch.randint(1, min_seq_length - 1, (1,)).item()
# 2. Mask other tokens - sample different masking levels per
if mask_ratio is None:
ratio = torch.rand(1).item()
mask_ratio = masking_logic.schedule(ratio)
# Create a random tensor with values between 0 and 1
random_tensor = torch.rand(
(B, T - start_t), dtype=torch.float).to(self.device)
# Create a mask where values less than p are set to True
initial_mask = random_tensor < mask_ratio
length_mask = self.build_mask_from_lengths(
lengths - start_t, T - start_t)
# we can't pick up tokens past token lengths
initial_mask = torch.logical_and(initial_mask, ~length_mask)
# Constrain ratio to always include some samples
# If all are False let's pick up at least one:
if torch.sum(initial_mask) == 0:
choose_steps = torch.randint(low=0, high=(T - start_t), size=(B,))
initial_mask[torch.arange(B), choose_steps] = torch.tensor(
True, device=self.device)
# 3. Add condition tokens containing information
acoustic_token_mask = torch.cat(
(torch.full((B, start_t), False, device=self.device), initial_mask), # noqa
1
)
return acoustic_token_mask, start_t, mask_ratio
def process_input(
self, data, lengths, rvq_level, min_seq_length=None,
mask_ratio=None, start_t=None, acoustic_token_mask=None
):
"""
data: (B, T, code_level, D)
rvq_level: int
"""
B = data.size(0)
T = data.size(1)
level_data = data[:, :, rvq_level, :] # [B, T, C, D] -> [B, T, D]
# Choose acoustic tokens to mask
if acoustic_token_mask is None:
acoustic_token_mask, start_t, mask_ratio = self.create_mask(
B, T, lengths, mask_ratio=mask_ratio, start_t=start_t,
min_seq_length=min_seq_length)
# Remove code information from chosen tokens
level_data[acoustic_token_mask, :] = 0
# Embed only lower rvq_level
lower_code_data = data[:, :, :rvq_level, :].sum(dim=2)
# Combine with chosen tokens at rvq_level.
# Note: all tokens at rvq_level+1: will be discarded.
summed_data = torch.add(lower_code_data, level_data)
return summed_data, acoustic_token_mask, mask_ratio, start_t
def forward(
self, x, code_level, semantic_tokens, lengths,
speaker_emb=None, min_seq_length=10, mask_ratio=None, start_t=None,
acoustic_token_mask=None
):
# FIXME: parallelize this
batch = []
for lvl, embed in enumerate(self.embedding[:(code_level + 1)]):
batch.append(embed(x[:, :, lvl])) # [B T D]
x = torch.stack(batch, dim=2) # [B T C D]
x, acoustic_token_mask, mask_ratio, start_t = self.process_input(
x, lengths, code_level, min_seq_length=min_seq_length,
mask_ratio=mask_ratio, start_t=start_t,
acoustic_token_mask=acoustic_token_mask
)
# Add phoneme embeddings
# Cross attention for all tokens?
# Add semantic tokens
# HACK ME
semantic_emb = self.semantic_embedding(semantic_tokens)
x = torch.add(x, semantic_emb)
# FIXME pfb30
# Merge different modalities
if self.hp.use_spkr_emb:
spkr_emb = F.normalize(speaker_emb, dim=-1)
spkr_emb = self.spkr_linear(
F.dropout(spkr_emb, self.hp.speaker_embed_dropout)
)
x = torch.add(x, spkr_emb)
output_frames = self.conformer(x, None)
x = self.heads[code_level](output_frames)
return x, acoustic_token_mask, mask_ratio, start_t
@torch.no_grad()
def inference(
self, codes, semantic_tokens,
length: torch.LongTensor, rvq_levels=7,
mask_ratio=0.99, maskgit_inference=True,
start_t: Union[torch.LongTensor, None] = None,
speaker_emb=None, steps=16
):
# Use half of the recording for the conditioning
if start_t is None:
start_t = torch.tensor(int((codes.shape[1]) / 2)).long()
start_t = start_t.item()
for rvq_level in range(rvq_levels):
original_codes = torch.clone(codes)
if rvq_level == 0 and maskgit_inference:
codes = self.multi_step_inference(
original_codes, semantic_tokens, length,
start_t=start_t, vamp_filtering=False,
speaker_emb=speaker_emb, steps=16
)
else:
codes = self.one_step_inference(
original_codes, semantic_tokens, length,
code_level=rvq_level,
mask_ratio=mask_ratio, start_t=start_t,
speaker_emb=speaker_emb
)
codes = rearrange(codes, 'T C -> 1 T C')
# Remove any padding left
codes = rearrange(codes, '1 T C -> 1 C T')
codes = torch.where(codes >= self.hp.n_codes, 0, codes)
acoustic_tokens = codes
semantic_tokens = rearrange(semantic_tokens, 'b c -> b 1 c')
semantic_tokens = torch.where(
semantic_tokens >= self.hp.n_codes, 0, semantic_tokens)
codes = torch.cat([semantic_tokens, acoustic_tokens], dim=1)
return codes
@torch.no_grad()
def one_step_inference(
self, original_codes, semantic_tokens, lengths, code_level=0,
mask_ratio=0.99, start_t=0, inference_setup="argmax", speaker_emb=None
):
codes = torch.clone(original_codes)
logits, _, _, _ = self.forward(
codes, code_level, semantic_tokens, lengths,
mask_ratio=mask_ratio, start_t=start_t,
speaker_emb=speaker_emb, acoustic_token_mask=False)
if inference_setup == "argmax":
probs = torch.nn.functional.softmax(logits, dim=-1)
top_indeces = torch.argmax(probs, dim=-1)
if inference_setup == "sampling":
top_indeces = torch.distributions.Categorical(
logits=logits).sample()
codes = rearrange(codes, '1 T C -> T C')
codes[start_t:, code_level] = top_indeces[0, start_t:]
return codes
@torch.no_grad()
def multi_step_inference(
self, original_codes, semantic_tokens, lengths,
start_t: torch.LongTensor=None,
choice_temperature=1.0, start_iter=0,
steps=16, vamp_filtering=False, speaker_emb=None
):
codes = torch.clone(original_codes)
code_level = 0
_, seq_len, _ = original_codes.shape
mask_token_id = self.padding_id
# Get true codes for the prompt
prompt_mask = codes[:, :start_t, code_level]
# Fill up rest with masks
mask = torch.full(
(1, seq_len - start_t), mask_token_id, device=self.device)
inputs = torch.cat((prompt_mask, mask), 1)
num_mask_tokens_at_start = torch.sum(inputs == mask_token_id, axis=-1)
# Initializes state
state = state_init(inputs, steps, start_iter=start_iter)
def loop_cond_fn(state):
"""Beam search loop termination condition."""
not_at_end = (state.cur_index < steps)
return not_at_end
while loop_cond_fn(state):
"""Beam search loop state update function."""
step = state.cur_index
# Current input ids: [batch_size, seq_length].
cur_ids = state.cur_seqs
# Calls model on current seqs to get next-iteration seqs.
with torch.no_grad():
logits, _, _, _ = self.forward(
rearrange(inputs, 'B T -> B T 1'),
code_level,
semantic_tokens, lengths,
acoustic_token_mask=False,
speaker_emb=speaker_emb)
# Samples the ids using categorical sampling:
if vamp_filtering:
typical_mass = 0.2
typical_min_tokens = 1
top_p = None
sample_cutoff = 0.5
typical_filtering = False
sampled_ids, selected_probs = sample_from_logits(
logits, sample=((step / steps) <= sample_cutoff),
temperature=choice_temperature,
typical_filtering=typical_filtering,
typical_mass=typical_mass,
typical_min_tokens=typical_min_tokens,
top_k=None, top_p=top_p, return_probs=True,
)
else:
sampled_ids = torch.distributions.Categorical(
logits=logits).sample()
# Just updates the masked tokens.
unknown_map = (cur_ids == mask_token_id)
sampled_ids = torch.where(unknown_map, sampled_ids, cur_ids)
# Defines the mask ratio for the next round. The number to mask out
# is determined by mask_ratio * unknown_number_in_the_beginning.
ratio = 1. * (step + 1) / steps
mask_ratio = masking_logic.schedule(ratio)
# Updates final seqs with the current sampled_ids.
final_seqs = torch.clone(state.final_seqs)
final_seqs[:, step, :] = sampled_ids
# Computes the probabilities of each selected tokens.
probs = torch.nn.functional.softmax(logits, dim=-1)
# Extract the probabilities of sampled ids
selected_probs = torch.squeeze(
torch.take_along_dim(
probs, torch.unsqueeze(sampled_ids, -1) , -1),
-1
)
# Ignores the tokens given in the input
# by overwriting their confidence.
selected_probs = torch.where(
unknown_map, selected_probs, torch.inf)
# Gets mask lens for each sample in the
# batch according to the mask ratio.
num_to_mask = torch.unsqueeze(
torch.floor(num_mask_tokens_at_start * mask_ratio), 1)
# Keeps at least one of prediction in this
# round and also masks out at least
# one and for the next iteration
num_to_mask = torch.maximum(
torch.tensor(1),
torch.minimum(
torch.sum(unknown_map, dim=-1, keepdim=True) - 1,
num_to_mask)
)
# Adds noise for randomness
masking = mask_by_random_topk(
num_to_mask, selected_probs, choice_temperature * (1. - ratio))
# Masks tokens with lower confidence.
sampled_ids = torch.where(masking, mask_token_id, sampled_ids)
state = State(
cur_index=state.cur_index + 1,
cur_seqs=sampled_ids,
final_seqs=final_seqs
)
codes = torch.clone(original_codes)
codes = rearrange(codes, '1 T C -> T C')
codes[:, 0] = state.final_seqs[0][-1]
return codes
|