Spaces:
Runtime error
Runtime error
File size: 9,270 Bytes
96ee597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
"""Inference logic.
Copyright PolyAI Limited.
"""
import argparse
import json
import logging
import os
import time
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
from einops import rearrange
from librosa.util import normalize
from pyannote.audio import Inference
from transformers import GenerationConfig, T5ForConditionalGeneration
import constants as c
from data.collation import get_text_semantic_token_collater
from data.semantic_dataset import TextTokenizer
from modules.s2a_model import Pheme
from modules.vocoder import VocoderType
# How many times one token can be generated
MAX_TOKEN_COUNT = 100
logging.basicConfig(level=logging.DEBUG)
device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--text", type=str,
default="I gotta say, I would never expect that to happen!"
)
parser.add_argument(
"--manifest_path", type=str, default="demo/manifest.json")
parser.add_argument("--outputdir", type=str, default="demo/")
parser.add_argument("--featuredir", type=str, default="demo/")
parser.add_argument(
"--text_tokens_file", type=str,
default="ckpt/unique_text_tokens.k2symbols"
)
parser.add_argument("--t2s_path", type=str, default="ckpt/t2s/")
parser.add_argument(
"--a2s_path", type=str, default="ckpt/s2a/s2a.ckpt")
parser.add_argument("--target_sample_rate", type=int, default=16_000)
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--top_k", type=int, default=210)
parser.add_argument("--voice", type=str, default="male_voice")
return parser.parse_args()
class PhemeClient():
def __init__(self, args):
self.args = args
self.outputdir = args.outputdir
self.target_sample_rate = args.target_sample_rate
self.featuredir = Path(args.featuredir).expanduser()
self.collater = get_text_semantic_token_collater(args.text_tokens_file)
self.phonemizer = TextTokenizer()
self.load_manifest(args.manifest_path)
# T2S model
self.t2s = T5ForConditionalGeneration.from_pretrained(args.t2s_path)
self.t2s.to(device)
self.t2s.eval()
# S2A model
self.s2a = Pheme.load_from_checkpoint(args.a2s_path)
self.s2a.to(device=device)
self.s2a.eval()
# Vocoder
vocoder = VocoderType["SPEECHTOKENIZER"].get_vocoder(None, None)
self.vocoder = vocoder.to(device)
self.vocoder.eval()
self.spkr_embedding = Inference(
"pyannote/embedding",
window="whole",
use_auth_token=os.environ["HUGGING_FACE_HUB_TOKEN"],
)
def load_manifest(self, input_path):
input_file = {}
with open(input_path, "rb") as f:
for line in f:
temp = json.loads(line)
input_file[temp["audio_filepath"].split(".wav")[0]] = temp
self.input_file = input_file
def lazy_decode(self, decoder_output, symbol_table):
semantic_tokens = map(lambda x: symbol_table[x], decoder_output)
semantic_tokens = [int(x) for x in semantic_tokens if x.isdigit()]
return np.array(semantic_tokens)
def infer_text(self, text, voice, sampling_config):
semantic_prompt = np.load(self.args.featuredir + "/audios-speech-tokenizer/semantic/" + f"{voice}.npy") # noqa
phones_seq = self.phonemizer(text)[0]
input_ids = self.collater([phones_seq])
input_ids = input_ids.type(torch.IntTensor).to(device)
labels = [str(lbl) for lbl in semantic_prompt]
labels = self.collater([labels])[:, :-1]
decoder_input_ids = labels.to(device).long()
logging.debug(f"decoder_input_ids: {decoder_input_ids}")
counts = 1E10
while (counts > MAX_TOKEN_COUNT):
output_ids = self.t2s.generate(
input_ids, decoder_input_ids=decoder_input_ids,
generation_config=sampling_config).sequences
# check repetitiveness
_, counts = torch.unique_consecutive(output_ids, return_counts=True)
counts = max(counts).item()
output_semantic = self.lazy_decode(
output_ids[0], self.collater.idx2token)
# remove the prompt
return output_semantic[len(semantic_prompt):].reshape(1, -1)
def _load_speaker_emb(self, element_id_prompt):
wav, _ = sf.read(self.featuredir / element_id_prompt)
audio = normalize(wav) * 0.95
speaker_emb = self.spkr_embedding(
{
"waveform": torch.FloatTensor(audio).unsqueeze(0),
"sample_rate": self.target_sample_rate
}
).reshape(1, -1)
return speaker_emb
def _load_prompt(self, prompt_file_path):
element_id_prompt = Path(prompt_file_path).stem
acoustic_path_prompt = self.featuredir / "audios-speech-tokenizer/acoustic" / f"{element_id_prompt}.npy" # noqa
semantic_path_prompt = self.featuredir / "audios-speech-tokenizer/semantic" / f"{element_id_prompt}.npy" # noqa
acoustic_prompt = np.load(acoustic_path_prompt).squeeze().T
semantic_prompt = np.load(semantic_path_prompt)[None]
return acoustic_prompt, semantic_prompt
def infer_acoustic(self, output_semantic, prompt_file_path):
semantic_tokens = output_semantic.reshape(1, -1)
acoustic_tokens = np.full(
[semantic_tokens.shape[1], 7], fill_value=c.PAD)
acoustic_prompt, semantic_prompt = self._load_prompt(prompt_file_path) # noqa
# Prepend prompt
acoustic_tokens = np.concatenate(
[acoustic_prompt, acoustic_tokens], axis=0)
semantic_tokens = np.concatenate([
semantic_prompt, semantic_tokens], axis=1)
# Add speaker
acoustic_tokens = np.pad(
acoustic_tokens, [[1, 0], [0, 0]], constant_values=c.SPKR_1)
semantic_tokens = np.pad(
semantic_tokens, [[0,0], [1, 0]], constant_values=c.SPKR_1)
speaker_emb = None
if self.s2a.hp.use_spkr_emb:
speaker_emb = self._load_speaker_emb(prompt_file_path)
speaker_emb = np.repeat(
speaker_emb, semantic_tokens.shape[1], axis=0)
speaker_emb = torch.from_numpy(speaker_emb).to(device)
else:
speaker_emb = None
acoustic_tokens = torch.from_numpy(
acoustic_tokens).unsqueeze(0).to(device).long()
semantic_tokens = torch.from_numpy(semantic_tokens).to(device).long()
start_t = torch.tensor(
[acoustic_prompt.shape[0]], dtype=torch.long, device=device)
length = torch.tensor([
semantic_tokens.shape[1]], dtype=torch.long, device=device)
codes = self.s2a.model.inference(
acoustic_tokens,
semantic_tokens,
start_t=start_t,
length=length,
maskgit_inference=True,
speaker_emb=speaker_emb
)
# Remove the prompt
synth_codes = codes[:, :, start_t:]
synth_codes = rearrange(synth_codes, "b c t -> c b t")
return synth_codes
def generate_audio(self, text, voice, sampling_config, prompt_file_path):
start_time = time.time()
output_semantic = self.infer_text(
text, voice, sampling_config
)
logging.debug(f"semantic_tokens: {time.time() - start_time}")
start_time = time.time()
codes = self.infer_acoustic(output_semantic, prompt_file_path)
logging.debug(f"acoustic_tokens: {time.time() - start_time}")
start_time = time.time()
audio_array = self.vocoder.decode(codes)
audio_array = rearrange(audio_array, "1 1 T -> T").cpu().numpy()
logging.debug(f"vocoder time: {time.time() - start_time}")
return audio_array
@torch.no_grad()
def infer(
self, text, voice="male_voice", temperature=0.7,
top_k=210, max_new_tokens=750,
):
sampling_config = GenerationConfig.from_pretrained(
self.args.t2s_path,
top_k=top_k,
num_beams=1,
do_sample=True,
temperature=temperature,
num_return_sequences=1,
max_new_tokens=max_new_tokens,
return_dict_in_generate=True,
output_scores=True
)
voice_data = self.input_file[voice]
prompt_file_path = voice_data["audio_prompt_filepath"]
text = voice_data["text"] + " " + text
audio_array = self.generate_audio(
text, voice, sampling_config, prompt_file_path)
return audio_array
if __name__ == "__main__":
args = parse_arguments()
args.outputdir = Path(args.outputdir).expanduser()
args.outputdir.mkdir(parents=True, exist_ok=True)
args.manifest_path = Path(args.manifest_path).expanduser()
client = PhemeClient(args)
audio_array = client.infer(args.text, voice=args.voice)
sf.write(os.path.join(
args.outputdir, f"{args.voice}.wav"), audio_array,
args.target_sample_rate
)
|