Spaces:
Runtime error
Runtime error
File size: 7,090 Bytes
96ee597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
"""Semantic tokens loading logic.
Copyright PolyAI Limited.
"""
import json
import logging
import random
import re
from logging import getLogger
from pathlib import Path
from typing import List, Pattern, Union
import numpy as np
import torch
from phonemizer.backend import EspeakBackend
from phonemizer.backend.espeak.language_switch import LanguageSwitch
from phonemizer.backend.espeak.words_mismatch import WordMismatch
from phonemizer.punctuation import Punctuation
from phonemizer.separator import Separator
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from data.collation import get_text_semantic_token_collater
class TextTokenizer:
"""Phonemize Text."""
def __init__(
self,
language="en-us",
backend="espeak",
separator=Separator(word="_", syllable="-", phone="|"),
preserve_punctuation=True,
punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(),
with_stress: bool = False,
tie: Union[bool, str] = False,
language_switch: LanguageSwitch = "keep-flags",
words_mismatch: WordMismatch = "ignore",
) -> None:
logger = getLogger("phonemizer")
logger.setLevel(logging.ERROR)
if backend == "espeak":
phonemizer = EspeakBackend(
language,
punctuation_marks=punctuation_marks,
preserve_punctuation=preserve_punctuation,
with_stress=with_stress,
tie=tie,
language_switch=language_switch,
words_mismatch=words_mismatch,
logger=logger,
)
else:
raise NotImplementedError(f"{backend}")
self.backend = phonemizer
self.separator = separator
def to_list(self, phonemized: str) -> List[str]:
fields = []
for word in phonemized.split(self.separator.word):
# "ɐ m|iː|n?" ɹ|ɪ|z|ɜː|v; h|ɪ|z.
pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE)
fields.extend(
[p for p in pp if p != self.separator.phone] + [self.separator.word]
)
assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count(
self.separator.phone
)
return fields[:-1]
def __call__(self, text, strip=True) -> List[List[str]]:
if isinstance(text, str):
text = [text]
phonemized = self.backend.phonemize(
text, separator=self.separator, strip=strip, njobs=1
)
return [self.to_list(p) for p in phonemized]
class Collator:
def collate(self, batch):
input_ids = [item["input_ids"] for item in batch]
output_sequences = [item["labels"] for item in batch]
# Pad sequences to the maximum length in the batch
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=0
)
output_sequences = torch.nn.utils.rnn.pad_sequence(
output_sequences, batch_first=True, padding_value=-100
)
# 1 - token is unmasked, 0 - token is masked.
attention_mask = input_ids != 0
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": output_sequences,
}
class ConcatenateSemanticDataset(Dataset):
def __init__(
self, manifest_path: str, symbol_table_path: str,
n_samples: int = 0, max_duration=15):
self.data = []
self.phonemizer = TextTokenizer()
self.text_collater = get_text_semantic_token_collater(
symbol_table_path)
self.manifest_path = manifest_path
self.n_samples = n_samples
self.max_duration = max_duration
if manifest_path is not None:
self._build()
def __len__(self):
if self.n_samples:
return min(self.n_samples, len(self.data))
return len(self.data)
def remove_unknown_symbols(self, text: List[str]):
res = []
for sym in text:
if sym not in self.text_collater.token2idx:
# print(f'{sym} is unk')
continue
res.append(sym)
return res
def __getitem__(self, idx):
item = self.data[idx]
input_ids = item["phoneme"].split("|")
input_ids = self.remove_unknown_symbols(input_ids)
input_ids_2 = None
if item.get("phoneme_2"):
input_ids_2 = item["phoneme_2"].split("|")
input_ids_2 = [self.remove_unknown_symbols(input_ids_2)]
input_ids = self.text_collater(
[input_ids], input_ids_2).to(dtype=torch.long)
input_ids = input_ids.to(dtype=torch.long)
labels = np.load(item["semantic_path"])
labels = [str(lbl) for lbl in labels]
labels_2 = None
if item.get("semantic_path_2"):
labels_2 = np.load(item["semantic_path_2"])
labels_2 = [[str(lbl) for lbl in labels_2]]
labels = self.text_collater([labels], labels_2).to(dtype=torch.long)
return {"input_ids": input_ids.squeeze(0), "labels": labels.squeeze(0)}
# TODO - remove this to not load to the memory
def _build(self):
for manifest_path in self.manifest_path:
dataset_path = Path(manifest_path).parent
with open(manifest_path, "r") as manifest_file:
manifest_data = json.load(manifest_file)
for key, value in tqdm(manifest_data.items()):
if float(value["duration"]) > self.max_duration:
continue
text = value["text"]
phoneme = value["phoneme"]
npy_path = f"{dataset_path}/audios-speech-tokenizer/semantic/{key.split('.wav')[0]}.npy" # noqa
datapoint = {
"text": text,
"semantic_path": npy_path,
"phoneme": phoneme
}
self.data.append(datapoint)
print(f"Total length of the dataset {manifest_path}: {len(self.data)}")
random.shuffle(self.data)
if __name__ == "__main__":
# Create an instance of the dataset
manifest_path = "datasets/ljspeech-training-data/dev.json"
text_tokens_file = "ckpt/unique_text_tokens.k2symbols"
seq2seq_dataset = ConcatenateSemanticDataset(
[manifest_path, manifest_path], text_tokens_file)
# seq2seq_dataset.phonemize_and_rewrite_manifest()
batch_size = 1 # Adjust to your desired batch size
dataloader = DataLoader(
seq2seq_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=Collator().collate,
)
for batch in dataloader:
print(batch["input_ids"])
print(batch["labels"])
print(batch["input_ids"][0].unique().max())
print(batch["input_ids"][0].unique().min())
print(batch["input_ids"].shape)
print(batch["labels"].shape)
break # Stop after the first batch if needed
|