Spaces:
Build error
Build error
import logging | |
import os | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import hf_hub_url, cached_download | |
from inference.face_detector import StatRetinaFaceDetector | |
from inference.model_pipeline import VSNetModelPipeline | |
from inference.onnx_model import ONNXModel | |
logging.basicConfig( | |
format='%(asctime)s %(levelname)-8s %(message)s', | |
level=logging.INFO, | |
datefmt='%Y-%m-%d %H:%M:%S') | |
MODEL_IMG_SIZE = 256 | |
usage_count = 0 | |
def load_model(): | |
REPO_ID = "Podtekatel/ARCNEGAN" | |
FILENAME_OLD = "arcane_exp_203_ep_399.onnx" | |
FILENAME_NEW = "arcane_exp_206_ep_138.onnx" | |
global model_old | |
global model_new | |
global pipeline_old | |
global pipeline_new | |
# Old model | |
model_path = cached_download( | |
hf_hub_url(REPO_ID, FILENAME_OLD), use_auth_token=os.getenv('HF_TOKEN') | |
) | |
model_old = ONNXModel(model_path) | |
pipeline_old = VSNetModelPipeline(model_old, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024, no_detected_resize=1024) | |
# New model | |
model_path = cached_download( | |
hf_hub_url(REPO_ID, FILENAME_NEW), use_auth_token=os.getenv('HF_TOKEN') | |
) | |
model_new = ONNXModel(model_path) | |
pipeline_new = VSNetModelPipeline(model_new, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024, | |
no_detected_resize=1024) | |
return model_old, model_new | |
load_model() | |
def inference(img, ver): | |
img = np.array(img) | |
if ver == 'version 2': | |
out_img = pipeline_new(img) | |
else: | |
out_img = pipeline_old(img) | |
out_img = Image.fromarray(out_img) | |
global usage_count | |
usage_count += 1 | |
logging.info(f'Usage count is {usage_count}') | |
return out_img | |
title = "ARCNStyleTransfer" | |
description = "Gradio Demo for Arcane Season 1 style transfer. To use it, simply upload your image, or click one of the examples to load them." | |
article = "This is one of my successful experiments on style transfer. I've built my own pipeline, generator model and private dataset to train this model<br>" \ | |
"" \ | |
"" \ | |
"" \ | |
"Model pipeline which used in project is improved CartoonGAN.<br>" \ | |
"This model was trained on RTX 2080 Ti 1.5 days with batch size 7.<br>" \ | |
"Model weights 64 MB in ONNX fp32 format, infers 25 ms on GPU and 150 ms on CPU at 256x256 resolution.<br>" \ | |
"If you want to use this app or integrate this model into yours, please contact me at email '[email protected]'." | |
imgs_folder = 'demo' | |
examples = [[os.path.join(imgs_folder, img_filename), version] for img_filename in sorted(os.listdir(imgs_folder)) for version in ['version 2']] | |
demo = gr.Interface( | |
fn=inference, | |
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Radio(['version 1', 'version 2'], type="value", default='version 2', label='version')], | |
outputs=gr.outputs.Image(type="pil"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples) | |
demo.queue(concurrency_count=1) | |
demo.launch() | |