Pclanglais commited on
Commit
cc4fb7d
·
verified ·
1 Parent(s): 208476f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -16,7 +16,7 @@ from sklearn.metrics.pairwise import cosine_similarity
16
 
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
- model = BGEM3FlagModel('BAAI/bge-m3',
20
  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
21
 
22
  embeddings = np.load("embeddings_tchap.npy")
@@ -40,7 +40,7 @@ system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n
40
  #Vector search over the database
41
  def vector_search(sentence_query):
42
 
43
- query_embedding = model.encode(sentence_query,
44
  batch_size=12,
45
  max_length=256, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
46
  )['dense_vecs']
 
16
 
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
+ embedding_model = BGEM3FlagModel('BAAI/bge-m3',
20
  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
21
 
22
  embeddings = np.load("embeddings_tchap.npy")
 
40
  #Vector search over the database
41
  def vector_search(sentence_query):
42
 
43
+ query_embedding = embedding_model.encode(sentence_query,
44
  batch_size=12,
45
  max_length=256, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
46
  )['dense_vecs']