File size: 5,984 Bytes
d731e09
0dfb412
f2019a4
ffbf266
f2019a4
 
ffbf266
f2019a4
d55b86a
 
ffbf266
 
31559f1
ffbf266
 
 
 
 
 
dfbcb2e
dd838d3
ffbf266
 
 
 
 
eed441d
0dfb412
21257a3
eed441d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21257a3
bafe915
0dfb412
21257a3
bafe915
eed441d
 
 
 
 
 
 
 
 
0dfb412
21257a3
eed441d
 
 
 
b6cc9e1
2814dfb
ffbf266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd838d3
 
dfbcb2e
dd838d3
ffbf266
 
 
 
cc8b44c
ffbf266
 
 
 
 
 
 
 
 
 
 
 
 
21257a3
 
 
0dfb412
 
 
21257a3
fa86caf
bafe915
21257a3
 
 
 
 
 
 
08d035b
21257a3
ffbf266
21257a3
 
 
 
bafe915
cd9ce00
21257a3
0dfb412
21257a3
 
3481362
f2019a4
21257a3
cd9ce00
b100458
21257a3
 
 
7468778
0dfb412
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import spaces
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd
import difflib

# OCR Correction Model
ocr_model_name = "PleIAs/OCRonos-Vintage"

import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load pre-trained model and tokenizer
model_name = "PleIAs/OCRonos-Vintage"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

# CSS for formatting
css = """
<style>
.generation {
    margin-left: 2em;
    margin-right: 2em;
    font-size: 1.2em;
}
:target {
    background-color: #CCF3DF;
}
.source {
    float: left;
    max-width: 17%;
    margin-left: 2%;
}
.tooltip {
    position: relative;
    cursor: pointer;
    font-variant-position: super;
    color: #97999b;
}
.tooltip:hover::after {
    content: attr(data-text);
    position: absolute;
    left: 0;
    top: 120%;
    white-space: pre-wrap;
    width: 500px;
    max-width: 500px;
    z-index: 1;
    background-color: #f9f9f9;
    color: #000;
    border: 1px solid #ddd;
    border-radius: 5px;
    padding: 5px;
    display: block;
    box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.deleted {
    background-color: #ffcccb;
    text-decoration: line-through;
}
.inserted {
    background-color: #90EE90;
}
.manuscript {
    display: flex;
    margin-bottom: 10px;
    align-items: baseline;
}
.annotation {
    width: 15%;
    padding-right: 20px;
    color: grey !important;
    font-style: italic;
    text-align: right;
}
.content {
    width: 80%;
}
h2 {
    margin: 0;
    font-size: 1.5em;
}
.title-content h2 {
    font-weight: bold;
}
.bibliography-content {
    color: darkgreen !important;
    margin-top: -5px;
}
.paratext-content {
    color: #a4a4a4 !important;
    margin-top: -5px;
}
</style>
"""

# Helper functions
def generate_html_diff(old_text, new_text):
    d = difflib.Differ()
    diff = list(d.compare(old_text.split(), new_text.split()))
    html_diff = []
    for word in diff:
        if word.startswith(' '):
            html_diff.append(word[2:])
        elif word.startswith('+ '):
            html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
    return ' '.join(html_diff)

def preprocess_text(text):
    text = re.sub(r'<[^>]+>', '', text)
    text = re.sub(r'\n', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

def split_text(text, max_tokens=500):
    parts = text.split("\n")
    chunks = []
    current_chunk = ""

    for part in parts:
        if current_chunk:
            temp_chunk = current_chunk + "\n" + part
        else:
            temp_chunk = part

        num_tokens = len(tokenizer.tokenize(temp_chunk))

        if num_tokens <= max_tokens:
            current_chunk = temp_chunk
        else:
            if current_chunk:
                chunks.append(current_chunk)
            current_chunk = part

    if current_chunk:
        chunks.append(current_chunk)

    if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
        long_text = chunks[0]
        chunks = []
        while len(tokenizer.tokenize(long_text)) > max_tokens:
            split_point = len(long_text) // 2
            while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
                split_point += 1
            if split_point >= len(long_text):
                split_point = len(long_text) - 1
            chunks.append(long_text[:split_point].strip())
            long_text = long_text[split_point:].strip()
        if long_text:
            chunks.append(long_text)

    return chunks


# Function to generate text
@spaces.GPU
def ocr_correction(prompt, max_new_tokens=500):
    model.to(device)
    
    prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
    input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)

    # Generate text
    output = model.generate(input_ids,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer.eos_token_id,
            top_k=50,
            num_return_sequences=1,
            do_sample=True,
            temperature=0.7
        )
    # Decode and return the generated text
    result = tokenizer.decode(output[0], skip_special_tokens=True)
    print(result)
    
    result = result.split("### Correction ###")[1]
    return result

# OCR Correction Class
class OCRCorrector:
    def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
        self.system_prompt = system_prompt

    def correct(self, user_message):
        generated_text = ocr_correction(user_message)
        html_diff = generate_html_diff(user_message, generated_text)
        return generated_text, html_diff

# Combined Processing Class
class TextProcessor:
    def __init__(self):
        self.ocr_corrector = OCRCorrector()

    @spaces.GPU(duration=120)
    def process(self, user_message):
        #OCR Correction
        corrected_text, html_diff = self.ocr_corrector.correct(user_message)
        
        # Combine results
        ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
        
        final_output = f"{css}{ocr_result}"
        return final_output

# Create the TextProcessor instance
text_processor = TextProcessor()

# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("""<h1 style="text-align:center">Vintage OCR corrector</h1>""")
    text_input = gr.Textbox(label="Your (bad?) text", type="text", lines=5)
    process_button = gr.Button("Process Text")
    text_output = gr.HTML(label="Processed text")
    process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])

if __name__ == "__main__":
    demo.queue().launch()