Spaces:
Running
Running
File size: 8,375 Bytes
d731e09 0dfb412 f2019a4 21257a3 f2019a4 21257a3 31559f1 0dfb412 208476f 21257a3 cf17c33 21257a3 22b51ff 21257a3 cf17c33 21257a3 22b51ff 21257a3 0dfb412 21257a3 0dfb412 21257a3 0dfb412 bafe915 0dfb412 21257a3 0dfb412 bafe915 0dfb412 bafe915 0dfb412 bafe915 21257a3 bafe915 0dfb412 21257a3 bafe915 21257a3 bafe915 0dfb412 21257a3 0dfb412 21257a3 0dfb412 bafe915 0dfb412 21257a3 0dfb412 bafe915 21257a3 08d035b 21257a3 bafe915 21257a3 0dfb412 21257a3 3481362 f2019a4 21257a3 b100458 21257a3 7468778 0dfb412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import spaces
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
from vllm import LLM, SamplingParams
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd
import difflib
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# OCR Correction Model
ocr_model_name = "PleIAs/OCRonos"
ocr_llm = LLM(ocr_model_name, max_model_len=8128)
# Editorial Segmentation Model
editorial_model = "PleIAs/Segmentext"
token_classifier = pipeline(
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
# CSS for formatting
css = """
<style>
.generation {
margin-left: 2em;
margin-right: 2em;
font-size: 1.2em;
}
:target {
background-color: #CCF3DF;
}
.source {
float: left;
max-width: 17%;
margin-left: 2%;
}
.tooltip {
position: relative;
cursor: pointer;
font-variant-position: super;
color: #97999b;
}
.tooltip:hover::after {
content: attr(data-text);
position: absolute;
left: 0;
top: 120%;
white-space: pre-wrap;
width: 500px;
max-width: 500px;
z-index: 1;
background-color: #f9f9f9;
color: #000;
border: 1px solid #ddd;
border-radius: 5px;
padding: 5px;
display: block;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.deleted {
background-color: #ffcccb;
text-decoration: line-through;
}
.inserted {
background-color: #90EE90;
}
.manuscript {
display: flex;
margin-bottom: 10px;
align-items: baseline;
}
.annotation {
width: 15%;
padding-right: 20px;
color: grey !important;
font-style: italic;
text-align: right;
}
.content {
width: 80%;
}
h2 {
margin: 0;
font-size: 1.5em;
}
.title-content h2 {
font-weight: bold;
}
.bibliography-content {
color: darkgreen !important;
margin-top: -5px;
}
.paratext-content {
color: #a4a4a4 !important;
margin-top: -5px;
}
</style>
"""
# Helper functions
def generate_html_diff(old_text, new_text):
d = difflib.Differ()
diff = list(d.compare(old_text.split(), new_text.split()))
html_diff = []
for word in diff:
if word.startswith(' '):
html_diff.append(word[2:])
elif word.startswith('+ '):
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
return ' '.join(html_diff)
def preprocess_text(text):
text = re.sub(r'<[^>]+>', '', text)
text = re.sub(r'\n', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def split_text(text, max_tokens=500):
parts = text.split("\n")
chunks = []
current_chunk = ""
for part in parts:
if current_chunk:
temp_chunk = current_chunk + "\n" + part
else:
temp_chunk = part
num_tokens = len(tokenizer.tokenize(temp_chunk))
if num_tokens <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = part
if current_chunk:
chunks.append(current_chunk)
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
long_text = chunks[0]
chunks = []
while len(tokenizer.tokenize(long_text)) > max_tokens:
split_point = len(long_text) // 2
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
split_point += 1
if split_point >= len(long_text):
split_point = len(long_text) - 1
chunks.append(long_text[:split_point].strip())
long_text = long_text[split_point:].strip()
if long_text:
chunks.append(long_text)
return chunks
def transform_chunks(marianne_segmentation):
marianne_segmentation = pd.DataFrame(marianne_segmentation)
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
html_output = []
for _, row in marianne_segmentation.iterrows():
entity_group = row['entity_group']
result_entity = "[" + entity_group.capitalize() + "]"
word = row['word']
if entity_group == 'title':
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
elif entity_group == 'bibliography':
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content bibliography-content">{word}</div></div>')
elif entity_group == 'paratext':
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content paratext-content">{word}</div></div>')
else:
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
final_html = '\n'.join(html_output)
return final_html
# OCR Correction Class
class OCRCorrector:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def correct(self, user_message):
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
prompts = [detailed_prompt]
outputs = ocr_llm.generate(prompts, sampling_params, use_tqdm=False)
generated_text = outputs[0].outputs[0].text
html_diff = generate_html_diff(user_message, generated_text)
return generated_text, html_diff
# Editorial Segmentation Class
class EditorialSegmenter:
def segment(self, text):
editorial_text = re.sub("\n", " ¶ ", text)
num_tokens = len(tokenizer.tokenize(editorial_text))
if num_tokens > 500:
batch_prompts = split_text(editorial_text, max_tokens=500)
else:
batch_prompts = [editorial_text]
out = token_classifier(batch_prompts)
classified_list = []
for classification in out:
df = pd.DataFrame(classification)
classified_list.append(df)
classified_list = pd.concat(classified_list)
out = transform_chunks(classified_list)
return out
# Combined Processing Class
class TextProcessor:
def __init__(self):
self.ocr_corrector = OCRCorrector()
self.editorial_segmenter = EditorialSegmenter()
@spaces.GPU(duration=120)
def process(self, user_message):
# Step 1: OCR Correction
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
# Step 2: Editorial Segmentation
segmented_text = self.editorial_segmenter.segment(corrected_text)
# Combine results
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
editorial_result = f'<h2 style="text-align:center">Editorial Segmentation</h2>\n<div class="generation">{segmented_text}</div>'
final_output = f"{css}{ocr_result}<br><br>{editorial_result}"
return final_output
# Create the TextProcessor instance
text_processor = TextProcessor()
# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.HTML("""<h1 style="text-align:center">PleIAs Editor</h1>""")
text_input = gr.Textbox(label="Your (bad?) text", type="text", lines=5)
process_button = gr.Button("Process Text")
text_output = gr.HTML(label="Processed text")
process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])
if __name__ == "__main__":
demo.queue().launch() |