File size: 5,044 Bytes
d731e09
0dfb412
f2019a4
 
 
 
b6cc9e1
d55b86a
 
 
1fca231
31559f1
0dfb412
208476f
 
b6cc9e1
8482186
b6cc9e1
 
22b51ff
b6cc9e1
eed441d
0dfb412
21257a3
eed441d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21257a3
bafe915
0dfb412
21257a3
bafe915
eed441d
 
 
 
 
 
 
 
 
0dfb412
21257a3
eed441d
 
 
 
b6cc9e1
 
 
 
 
 
 
 
 
 
 
 
 
 
10a4171
 
b6cc9e1
 
10a4171
b6cc9e1
 
10a4171
b6cc9e1
10a4171
 
 
63e8ceb
10a4171
 
 
 
b6cc9e1
10a4171
b6cc9e1
 
 
 
21257a3
 
 
0dfb412
 
 
21257a3
fa86caf
bafe915
21257a3
 
 
 
 
 
 
08d035b
21257a3
b6cc9e1
21257a3
 
 
 
bafe915
cd9ce00
21257a3
0dfb412
21257a3
 
3481362
f2019a4
21257a3
cd9ce00
b100458
21257a3
 
 
7468778
0dfb412
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import spaces
import transformers
import re
import torch
import gradio as gr
import os
import ctranslate2
import difflib
import shutil
import requests
from concurrent.futures import ThreadPoolExecutor

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load CTranslate2 model and tokenizer
model_path = "ocronos_ct2"
generator = ctranslate2.Generator(model_path, device=device)
tokenizer = transformers.AutoTokenizer.from_pretrained("PleIAs/OCRonos-Vintage")

# CSS for formatting (unchanged)
# CSS for formatting
css = """
<style>
.generation {
    margin-left: 2em;
    margin-right: 2em;
    font-size: 1.2em;
}
:target {
    background-color: #CCF3DF;
}
.source {
    float: left;
    max-width: 17%;
    margin-left: 2%;
}
.tooltip {
    position: relative;
    cursor: pointer;
    font-variant-position: super;
    color: #97999b;
}
.tooltip:hover::after {
    content: attr(data-text);
    position: absolute;
    left: 0;
    top: 120%;
    white-space: pre-wrap;
    width: 500px;
    max-width: 500px;
    z-index: 1;
    background-color: #f9f9f9;
    color: #000;
    border: 1px solid #ddd;
    border-radius: 5px;
    padding: 5px;
    display: block;
    box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.deleted {
    background-color: #ffcccb;
    text-decoration: line-through;
}
.inserted {
    background-color: #90EE90;
}
.manuscript {
    display: flex;
    margin-bottom: 10px;
    align-items: baseline;
}
.annotation {
    width: 15%;
    padding-right: 20px;
    color: grey !important;
    font-style: italic;
    text-align: right;
}
.content {
    width: 80%;
}
h2 {
    margin: 0;
    font-size: 1.5em;
}
.title-content h2 {
    font-weight: bold;
}
.bibliography-content {
    color: darkgreen !important;
    margin-top: -5px;
}
.paratext-content {
    color: #a4a4a4 !important;
    margin-top: -5px;
}
</style>
"""

# Helper functions
def generate_html_diff(old_text, new_text):
    d = difflib.Differ()
    diff = list(d.compare(old_text.split(), new_text.split()))
    html_diff = []
    for word in diff:
        if word.startswith(' '):
            html_diff.append(word[2:])
        elif word.startswith('+ '):
            html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
    return ' '.join(html_diff)

def preprocess_text(text):
    text = re.sub(r'<[^>]+>', '', text)
    text = re.sub(r'\n', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

def split_text(text, max_tokens=400):
    encoded = tokenizer.encode(text)
    splits = []
    for i in range(0, len(encoded), max_tokens):
        split = encoded[i:i+max_tokens]
        splits.append(tokenizer.decode(split))
    return splits

# Function to generate text using CTranslate2
def ocr_correction(prompt, max_new_tokens=600):
    splits = split_text(prompt, max_tokens=400)
    corrected_splits = []

    list_prompts = []

    for split in splits:
        full_prompt = f"### Text ###\n{split}\n\n\n### Correction ###\n"
        print(full_prompt)
        encoded = tokenizer.encode(full_prompt)
        prompt_tokens = tokenizer.convert_ids_to_tokens(encoded)
        list_prompts.append(prompt_tokens)

    results = generator.generate_batch(
        list_prompts,
        max_length=max_new_tokens,
        sampling_temperature=0,
        sampling_topk=20,
        repetition_penalty=1.1,
        include_prompt_in_result=False
    )

    for result in results:
        corrected_text = tokenizer.decode(result.sequences_ids[0])
        corrected_splits.append(corrected_text)

    return " ".join(corrected_splits)

# OCR Correction Class
class OCRCorrector:
    def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
        self.system_prompt = system_prompt

    def correct(self, user_message):
        generated_text = ocr_correction(user_message)
        html_diff = generate_html_diff(user_message, generated_text)
        return generated_text, html_diff

# Combined Processing Class
class TextProcessor:
    def __init__(self):
        self.ocr_corrector = OCRCorrector()

    @spaces.GPU(duration=120)
    def process(self, user_message):
        # OCR Correction
        corrected_text, html_diff = self.ocr_corrector.correct(user_message)
        
        # Combine results
        ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
        
        final_output = f"{css}{ocr_result}"
        return final_output

# Create the TextProcessor instance
text_processor = TextProcessor()

# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("""<h1 style="text-align:center">Vintage OCR corrector</h1>""")
    text_input = gr.Textbox(label="Your (bad?) text", type="text", lines=5)
    process_button = gr.Button("Process Text")
    text_output = gr.HTML(label="Processed text")
    process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])

if __name__ == "__main__":
    demo.queue().launch()