Spaces:
Running
Running
File size: 3,487 Bytes
0dfb412 f2019a4 0dfb412 f2019a4 0dfb412 f2019a4 0dfb412 31559f1 0dfb412 208476f 0dfb412 22b51ff 0dfb412 22b51ff b053d03 0dfb412 3481362 f2019a4 0dfb412 f2019a4 b053d03 0dfb412 7f1183e 0dfb412 b053d03 0dfb412 7468778 0dfb412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
from vllm import LLM, SamplingParams
import torch
import gradio as gr
import json
import os
import shutil
import requests
import chromadb
import pandas as pd
from chromadb.config import Settings
from chromadb.utils import embedding_functions
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "PleIAs/OCRonos"
llm = LLM(model_name, max_model_len=8128)
#CSS for references formatting
css = """
.generation {
margin-left:2em;
margin-right:2em;
size:1.2em;
}
:target {
background-color: #CCF3DF; /* Change the text color to red */
}
.source {
float:left;
max-width:17%;
margin-left:2%;
}
.tooltip {
position: relative;
cursor: pointer;
font-variant-position: super;
color: #97999b;
}
.tooltip:hover::after {
content: attr(data-text);
position: absolute;
left: 0;
top: 120%; /* Adjust this value as needed to control the vertical spacing between the text and the tooltip */
white-space: pre-wrap; /* Allows the text to wrap */
width: 500px; /* Sets a fixed maximum width for the tooltip */
max-width: 500px; /* Ensures the tooltip does not exceed the maximum width */
z-index: 1;
background-color: #f9f9f9;
color: #000;
border: 1px solid #ddd;
border-radius: 5px;
padding: 5px;
display: block;
box-shadow: 0 4px 8px rgba(0,0,0,0.1); /* Optional: Adds a subtle shadow for better visibility */
}"""
#Curtesy of chatgpt
# Class to encapsulate the Falcon chatbot
class MistralChatBot:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def predict(self, user_message):
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
detailed_prompt = correction = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
print(detailed_prompt)
prompts = [detailed_prompt]
outputs = llm.generate(prompts, sampling_params, use_tqdm = False)
generated_text = outputs[0].outputs[0].text
generated_text = '<h2 style="text-align:center">Réponse</h3>\n<div class="generation">' + generated_text + "</div>"
return generated_text
# Create the Falcon chatbot instance
mistral_bot = MistralChatBot()
# Define the Gradio interface
title = "Correction d'OCR"
description = "Un outil expérimental de correction d'OCR basé sur des modèles de langue"
examples = [
[
"Qui peut bénéficier de l'AIP?", # user_message
0.7 # temperature
]
]
additional_inputs=[
gr.Slider(
label="Température",
value=0.2, # Default value
minimum=0.05,
maximum=1.0,
step=0.05,
interactive=True,
info="Des valeurs plus élevées donne plus de créativité, mais aussi d'étrangeté",
),
]
demo = gr.Blocks()
with gr.Blocks(theme='JohnSmith9982/small_and_pretty', css=css) as demo:
gr.HTML("""<h1 style="text-align:center">Correction d'OCR</h1>""")
text_input = gr.Textbox(label="Votre texte.", type="text", lines=1)
text_button = gr.Button("Corriger l'OCR")
text_output = gr.HTML(label="Le texte corrigé")
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output])
if __name__ == "__main__":
demo.queue().launch() |