Spaces:
Build error
Build error
PeteBleackley
commited on
Commit
·
e149b0f
1
Parent(s):
c106121
Coreference Resolution for WikiQA dataset
Browse files- .gitignore +2 -0
- DataSets.md +2 -0
- qarac/utils/CoreferenceResolver.py +64 -0
- qarac/utils/__init__.py +0 -0
- requirements.txt +2 -0
- scripts.py +17 -7
.gitignore
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
*.json
|
2 |
*/__pycache__/*
|
3 |
*.pyc
|
|
|
|
|
|
1 |
*.json
|
2 |
*/__pycache__/*
|
3 |
*.pyc
|
4 |
+
*.tsv
|
5 |
+
*.csv
|
DataSets.md
CHANGED
@@ -8,6 +8,8 @@ We are planning to use the following datasets to train the models.
|
|
8 |
|
9 |
## Question Answering
|
10 |
|
|
|
|
|
11 |
## Reasoning
|
12 |
|
13 |
[Avicenna: Syllogistic Commonsense Reasoning](https://github.com/ZeinabAghahadi/Syllogistic-Commonsense-Reasoning)
|
|
|
8 |
|
9 |
## Question Answering
|
10 |
|
11 |
+
[WikiQA (Wikipedia Open-Domain Question Answering](https://paperswithcode.com/dataset/wikiqa)
|
12 |
+
|
13 |
## Reasoning
|
14 |
|
15 |
[Avicenna: Syllogistic Commonsense Reasoning](https://github.com/ZeinabAghahadi/Syllogistic-Commonsense-Reasoning)
|
qarac/utils/CoreferenceResolver.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Mon Sep 11 09:46:51 2023
|
5 |
+
|
6 |
+
@author: peter
|
7 |
+
"""
|
8 |
+
|
9 |
+
from allennlp.predictors.predictor import Predictor
|
10 |
+
import pandas
|
11 |
+
|
12 |
+
def clean(sentence):
|
13 |
+
return sentence if sentence.strip().endswith('.') else sentence+'.'
|
14 |
+
|
15 |
+
class CoreferenceResolver(object):
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
model_url = "https://storage.googleapis.com/allennlp-public-models/coref-spanbert-large-2020.02.27.tar.gz"
|
19 |
+
self.predictor = Predictor.from_path(model_url)
|
20 |
+
|
21 |
+
def __call__(self,group):
|
22 |
+
tokenized = group.apply(clean).str.split()
|
23 |
+
line_breaks = tokenized.apply(len).cumsum()
|
24 |
+
doc = []
|
25 |
+
for line in tokenized:
|
26 |
+
doc.extend(line)
|
27 |
+
clusters = self.predictor.predict_tokenized(doc)
|
28 |
+
resolutions = {}
|
29 |
+
for cluster in clusters['clusters']:
|
30 |
+
starts = []
|
31 |
+
longest = -1
|
32 |
+
canonical = None
|
33 |
+
for [start_pos,end_pos] in cluster:
|
34 |
+
resolutions[start_pos]={'end':end_pos+1}
|
35 |
+
starts.append(start_pos)
|
36 |
+
length = end_pos - start_pos
|
37 |
+
if length > longest:
|
38 |
+
longest = length
|
39 |
+
canonical = doc[start_pos:end_pos+1]
|
40 |
+
for start in starts:
|
41 |
+
resolutions[start]['canonical']=canonical
|
42 |
+
doc_pos = 0
|
43 |
+
line = 0
|
44 |
+
results = []
|
45 |
+
current = []
|
46 |
+
while doc_pos < len(doc):
|
47 |
+
if doc_pos in resolutions:
|
48 |
+
current.extend(resolutions[doc_pos]['canonical'])
|
49 |
+
doc_pos=resolutions[doc_pos]['end']
|
50 |
+
else:
|
51 |
+
current.append(doc[doc_pos])
|
52 |
+
doc_pos+=1
|
53 |
+
if doc_pos>=line_breaks.iloc[line]:
|
54 |
+
results.append(' '.join(current))
|
55 |
+
line+=1
|
56 |
+
current = []
|
57 |
+
return pandas.Series(results,
|
58 |
+
index=group.index)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
qarac/utils/__init__.py
ADDED
File without changes
|
requirements.txt
CHANGED
@@ -8,3 +8,5 @@ transformers
|
|
8 |
spacy
|
9 |
spacy-experimental
|
10 |
pandas
|
|
|
|
|
|
8 |
spacy
|
9 |
spacy-experimental
|
10 |
pandas
|
11 |
+
allennlp
|
12 |
+
allennlp-models
|
scripts.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
|
2 |
import os
|
|
|
3 |
import argparse
|
4 |
import pickle
|
5 |
import tokenizers
|
@@ -9,8 +10,10 @@ import qarac.models.qarac_base_model
|
|
9 |
import keras
|
10 |
import tensorflow
|
11 |
import spacy
|
12 |
-
import spacy_experimental
|
13 |
import pandas
|
|
|
|
|
|
|
14 |
|
15 |
def decoder_loss(y_true,y_pred):
|
16 |
return keras.losses.sparse_categorical_crossentropy(y_true,
|
@@ -28,13 +31,17 @@ def clean_question(doc):
|
|
28 |
|
29 |
def prepare_wiki_qa(filename,outfilename):
|
30 |
data = pandas.read_csv(filename,sep='\t')
|
|
|
31 |
nlp = spacy.load('en_core_web_trf')
|
32 |
-
|
33 |
-
data['Resolved_answer'] =
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
def train_base_model(task,filename):
|
@@ -71,7 +78,10 @@ if __name__ == '__main__':
|
|
71 |
parser.add_argument('task')
|
72 |
parser.add_argument('-f','--filename')
|
73 |
parser.add_argument('-t','--training-task')
|
|
|
74 |
args = parser.parse_args()
|
75 |
if args.task == 'train_base_model':
|
76 |
train_base_model(args.training_task,args.filename)
|
|
|
|
|
77 |
|
|
|
1 |
|
2 |
import os
|
3 |
+
import re
|
4 |
import argparse
|
5 |
import pickle
|
6 |
import tokenizers
|
|
|
10 |
import keras
|
11 |
import tensorflow
|
12 |
import spacy
|
|
|
13 |
import pandas
|
14 |
+
import qarac.utils.CoreferenceResolver
|
15 |
+
|
16 |
+
|
17 |
|
18 |
def decoder_loss(y_true,y_pred):
|
19 |
return keras.losses.sparse_categorical_crossentropy(y_true,
|
|
|
31 |
|
32 |
def prepare_wiki_qa(filename,outfilename):
|
33 |
data = pandas.read_csv(filename,sep='\t')
|
34 |
+
data['QNum']=data['QuestionID'].apply(lambda x: int(x[1:]))
|
35 |
nlp = spacy.load('en_core_web_trf')
|
36 |
+
predictor = qarac.utils.CoreferenceResolver.CoreferenceResolver()
|
37 |
+
data['Resolved_answer'] = data.groupby('QNum')['Sentence'].transform(predictor)
|
38 |
+
unique_questions = data.groupby('QNum')['Question'].first()
|
39 |
+
cleaned_questions = pandas.Series([clean_question(doc)
|
40 |
+
for doc in nlp.pipe(unique_questions)],
|
41 |
+
index = unique_questions.index)
|
42 |
+
for (i,question) in cleaned_questions.items():
|
43 |
+
data.loc[data['QNum']==i,'Cleaned_question']=question
|
44 |
+
data[['Cleaned_question','Resolved_answer','Label']].to_csv(outfilename)
|
45 |
|
46 |
|
47 |
def train_base_model(task,filename):
|
|
|
78 |
parser.add_argument('task')
|
79 |
parser.add_argument('-f','--filename')
|
80 |
parser.add_argument('-t','--training-task')
|
81 |
+
parser.add_argument('-o','--outputfile')
|
82 |
args = parser.parse_args()
|
83 |
if args.task == 'train_base_model':
|
84 |
train_base_model(args.training_task,args.filename)
|
85 |
+
elif args.task == 'prepare_wiki_qa':
|
86 |
+
prepare_wiki_qa(args.filename,args.outputfile)
|
87 |
|