Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# Copyright 2023 (authors: Feiteng Li) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from dataclasses import asdict, dataclass | |
from typing import Any, Dict, List, Optional, Pattern, Union | |
import numpy as np | |
import torch | |
import torchaudio | |
from encodec import EncodecModel | |
from encodec.utils import convert_audio | |
def remove_encodec_weight_norm(model): | |
from encodec.modules import SConv1d | |
from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock | |
from torch.nn.utils import remove_weight_norm | |
encoder = model.encoder.model | |
for key in encoder._modules: | |
if isinstance(encoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(encoder._modules[key].shortcut.conv.conv) | |
block_modules = encoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(encoder._modules[key], SConv1d): | |
remove_weight_norm(encoder._modules[key].conv.conv) | |
decoder = model.decoder.model | |
for key in decoder._modules: | |
if isinstance(decoder._modules[key], SEANetResnetBlock): | |
remove_weight_norm(decoder._modules[key].shortcut.conv.conv) | |
block_modules = decoder._modules[key].block._modules | |
for skey in block_modules: | |
if isinstance(block_modules[skey], SConv1d): | |
remove_weight_norm(block_modules[skey].conv.conv) | |
elif isinstance(decoder._modules[key], SConvTranspose1d): | |
remove_weight_norm(decoder._modules[key].convtr.convtr) | |
elif isinstance(decoder._modules[key], SConv1d): | |
remove_weight_norm(decoder._modules[key].conv.conv) | |
class AudioTokenizer: | |
"""EnCodec audio.""" | |
def __init__( | |
self, | |
device: Any = None, | |
) -> None: | |
# Instantiate a pretrained EnCodec model | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
remove_encodec_weight_norm(model) | |
if not device: | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
self._device = device | |
self.codec = model.to(device) | |
self.sample_rate = model.sample_rate | |
self.channels = model.channels | |
def device(self): | |
return self._device | |
def encode(self, wav: torch.Tensor) -> torch.Tensor: | |
return self.codec.encode(wav.to(self.device)) | |
def decode(self, frames: torch.Tensor) -> torch.Tensor: | |
return self.codec.decode(frames) | |
def tokenize_audio(tokenizer: AudioTokenizer, audio): | |
# Load and pre-process the audio waveform | |
if isinstance(audio, str): | |
wav, sr = torchaudio.load(audio) | |
else: | |
wav, sr = audio | |
wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) | |
wav = wav.unsqueeze(0) | |
# Extract discrete codes from EnCodec | |
with torch.no_grad(): | |
encoded_frames = tokenizer.encode(wav) | |
return encoded_frames | |
if __name__ == "__main__": | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
samples = torch.from_numpy(np.random.random([4, 1, 1600])).type( | |
torch.float32 | |
) | |
codes_raw = model.encode(samples) | |
remove_encodec_weight_norm(model) | |
codes_norm = model.encode(samples) | |
assert torch.allclose(codes_raw[0][0], codes_norm[0][0]) | |