Spaces:
Running
on
L4
Running
on
L4
from pathlib import Path | |
from typing import List, Tuple | |
import numpy as np | |
import torch | |
class TextTokenCollater: | |
"""Collate list of text tokens | |
Map sentences to integers. Sentences are padded to equal length. | |
Beginning and end-of-sequence symbols can be added. | |
Example: | |
>>> token_collater = TextTokenCollater(text_tokens) | |
>>> tokens_batch, tokens_lens = token_collater(text) | |
Returns: | |
tokens_batch: IntTensor of shape (B, L) | |
B: batch dimension, number of input sentences | |
L: length of the longest sentence | |
tokens_lens: IntTensor of shape (B,) | |
Length of each sentence after adding <eos> and <bos> | |
but before padding. | |
""" | |
def __init__( | |
self, | |
text_tokens: List[str], | |
add_eos: bool = True, | |
add_bos: bool = True, | |
pad_symbol: str = "<pad>", | |
bos_symbol: str = "<bos>", | |
eos_symbol: str = "<eos>", | |
): | |
self.pad_symbol = pad_symbol | |
self.add_eos = add_eos | |
self.add_bos = add_bos | |
self.bos_symbol = bos_symbol | |
self.eos_symbol = eos_symbol | |
unique_tokens = ( | |
[pad_symbol] | |
+ ([bos_symbol] if add_bos else []) | |
+ ([eos_symbol] if add_eos else []) | |
+ sorted(text_tokens) | |
) | |
self.token2idx = {token: idx for idx, token in enumerate(unique_tokens)} | |
self.idx2token = [token for token in unique_tokens] | |
def index( | |
self, tokens_list: List[str] | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
seqs, seq_lens = [], [] | |
for tokens in tokens_list: | |
assert ( | |
all([True if s in self.token2idx else False for s in tokens]) | |
is True | |
) | |
seq = ( | |
([self.bos_symbol] if self.add_bos else []) | |
+ list(tokens) | |
+ ([self.eos_symbol] if self.add_eos else []) | |
) | |
seqs.append(seq) | |
seq_lens.append(len(seq)) | |
max_len = max(seq_lens) | |
for k, (seq, seq_len) in enumerate(zip(seqs, seq_lens)): | |
seq.extend([self.pad_symbol] * (max_len - seq_len)) | |
tokens = torch.from_numpy( | |
np.array( | |
[[self.token2idx[token] for token in seq] for seq in seqs], | |
dtype=np.int64, | |
) | |
) | |
tokens_lens = torch.IntTensor(seq_lens) | |
return tokens, tokens_lens | |
def __call__(self, texts: List[str]) -> Tuple[torch.Tensor, torch.Tensor]: | |
tokens_seqs = [[p for p in text] for text in texts] | |
max_len = len(max(tokens_seqs, key=len)) | |
seqs = [ | |
([self.bos_symbol] if self.add_bos else []) | |
+ list(seq) | |
+ ([self.eos_symbol] if self.add_eos else []) | |
+ [self.pad_symbol] * (max_len - len(seq)) | |
for seq in tokens_seqs | |
] | |
tokens_batch = torch.from_numpy( | |
np.array( | |
[seq for seq in seqs], | |
dtype=np.int64, | |
) | |
) | |
tokens_lens = torch.IntTensor( | |
[ | |
len(seq) + int(self.add_eos) + int(self.add_bos) | |
for seq in tokens_seqs | |
] | |
) | |
return tokens_batch, tokens_lens | |
def get_text_token_collater() -> TextTokenCollater: | |
collater = TextTokenCollater( | |
['0'], add_bos=False, add_eos=False | |
) | |
return collater | |