Spaces:
Running
on
L4
Running
on
L4
from typing import Optional, Tuple, List | |
import math | |
import torch | |
from torch import Tensor | |
from torch.nn import Linear, Module | |
from torch.nn import functional as F | |
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ | |
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear | |
from torch.nn.parameter import Parameter | |
def _in_projection_packed( | |
q: Tensor, | |
k: Tensor, | |
v: Tensor, | |
w: Tensor, | |
b: Optional[Tensor] = None, | |
) -> List[Tensor]: | |
r""" | |
Performs the in-projection step of the attention operation, using packed weights. | |
Output is a triple containing projection tensors for query, key and value. | |
Args: | |
q, k, v: query, key and value tensors to be projected. For self-attention, | |
these are typically the same tensor; for encoder-decoder attention, | |
k and v are typically the same tensor. (We take advantage of these | |
identities for performance if they are present.) Regardless, q, k and v | |
must share a common embedding dimension; otherwise their shapes may vary. | |
w: projection weights for q, k and v, packed into a single tensor. Weights | |
are packed along dimension 0, in q, k, v order. | |
b: optional projection biases for q, k and v, packed into a single tensor | |
in q, k, v order. | |
Shape: | |
Inputs: | |
- q: :math:`(..., E)` where E is the embedding dimension | |
- k: :math:`(..., E)` where E is the embedding dimension | |
- v: :math:`(..., E)` where E is the embedding dimension | |
- w: :math:`(E * 3, E)` where E is the embedding dimension | |
- b: :math:`E * 3` where E is the embedding dimension | |
Output: | |
- in output list :math:`[q', k', v']`, each output tensor will have the | |
same shape as the corresponding input tensor. | |
""" | |
E = q.size(-1) | |
if k is v: | |
if q is k: | |
# self-attention | |
return F.linear(q, w, b).chunk(3, dim=-1) | |
else: | |
# encoder-decoder attention | |
w_q, w_kv = w.split([E, E * 2]) | |
if b is None: | |
b_q = b_kv = None | |
else: | |
b_q, b_kv = b.split([E, E * 2]) | |
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) | |
else: | |
w_q, w_k, w_v = w.chunk(3) | |
if b is None: | |
b_q = b_k = b_v = None | |
else: | |
b_q, b_k, b_v = b.chunk(3) | |
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) | |
def _scaled_dot_product_attention( | |
q: Tensor, | |
k: Tensor, | |
v: Tensor, | |
attn_mask: Optional[Tensor] = None, | |
dropout_p: float = 0.0, | |
) -> Tuple[Tensor, Tensor]: | |
r""" | |
Computes scaled dot product attention on query, key and value tensors, using | |
an optional attention mask if passed, and applying dropout if a probability | |
greater than 0.0 is specified. | |
Returns a tensor pair containing attended values and attention weights. | |
Args: | |
q, k, v: query, key and value tensors. See Shape section for shape details. | |
attn_mask: optional tensor containing mask values to be added to calculated | |
attention. May be 2D or 3D; see Shape section for details. | |
dropout_p: dropout probability. If greater than 0.0, dropout is applied. | |
Shape: | |
- q: :math:`(B, Nt, E)` where B is batch size, Nt is the target sequence length, | |
and E is embedding dimension. | |
- key: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, | |
and E is embedding dimension. | |
- value: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, | |
and E is embedding dimension. | |
- attn_mask: either a 3D tensor of shape :math:`(B, Nt, Ns)` or a 2D tensor of | |
shape :math:`(Nt, Ns)`. | |
- Output: attention values have shape :math:`(B, Nt, E)`; attention weights | |
have shape :math:`(B, Nt, Ns)` | |
""" | |
B, Nt, E = q.shape | |
q = q / math.sqrt(E) | |
# (B, Nt, E) x (B, E, Ns) -> (B, Nt, Ns) | |
if attn_mask is not None: | |
attn = torch.baddbmm(attn_mask, q, k.transpose(-2, -1)) | |
else: | |
attn = torch.bmm(q, k.transpose(-2, -1)) | |
attn = F.softmax(attn, dim=-1) | |
if dropout_p > 0.0: | |
attn = F.dropout(attn, p=dropout_p) | |
# (B, Nt, Ns) x (B, Ns, E) -> (B, Nt, E) | |
output = torch.bmm(attn, v) | |
return output, attn | |
def multi_head_attention_forward( | |
x, | |
ipw, | |
ipb, | |
opw, | |
opb, | |
n_head, | |
attn_mask, | |
past_kv=None, | |
use_cache=False, | |
): | |
# x = x.transpose(1, 0) | |
# tgt_len, bsz, embed_dim = x.shape | |
# head_dim = embed_dim // n_head | |
# q, k, v = _in_projection_packed(x, x, x, ipw, ipb) | |
# q = q.contiguous().view(tgt_len, bsz * n_head, head_dim).transpose(0, 1) | |
# k = k.contiguous().view(k.shape[0], bsz * n_head, head_dim).transpose(0, 1) | |
# v = v.contiguous().view(v.shape[0], bsz * n_head, head_dim).transpose(0, 1) | |
# new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) | |
# new_attn_mask.masked_fill_(attn_mask, float("-inf")) | |
# attn_mask = new_attn_mask | |
# | |
# attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, 0.0) | |
# attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim) | |
# attn_output = torch._C._nn.linear(attn_output, opw, opb) | |
# attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) | |
B, T, C = x.size() | |
q, k, v = torch._C._nn.linear(x, ipw, ipb).chunk(3, dim=-1) | |
k = k.view(B, T, n_head, C // n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, n_head, C // n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, n_head, C // n_head).transpose(1, 2) # (B, nh, T, hs) | |
if past_kv is not None: | |
past_key = past_kv[0] | |
past_value = past_kv[1] | |
k = torch.cat((past_key, k), dim=-2) | |
v = torch.cat((past_value, v), dim=-2) | |
FULL_T = k.shape[-2] | |
if use_cache is True: | |
present = (k, v) | |
else: | |
present = None | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = att.masked_fill(attn_mask[FULL_T - T:FULL_T, :FULL_T], float('-inf')) | |
att = F.softmax(att, dim=-1) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
y = torch._C._nn.linear(y, opw, opb) | |
return (y, present) | |
class MultiheadAttention(Module): | |
r"""Allows the model to jointly attend to information | |
from different representation subspaces as described in the paper: | |
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. | |
Multi-Head Attention is defined as: | |
.. math:: | |
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O | |
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. | |
``forward()`` will use a special optimized implementation if all of the following | |
conditions are met: | |
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This | |
restriction will be loosened in the future.) | |
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` | |
- training is disabled (using ``.eval()``) | |
- dropout is 0 | |
- ``add_bias_kv`` is ``False`` | |
- ``add_zero_attn`` is ``False`` | |
- ``batch_first`` is ``True`` and the input is batched | |
- ``kdim`` and ``vdim`` are equal to ``embed_dim`` | |
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed | |
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask`` | |
nor ``attn_mask`` is passed | |
If the optimized implementation is in use, a | |
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for | |
``query``/``key``/``value`` to represent padding more efficiently than using a | |
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ | |
will be returned, and an additional speedup proportional to the fraction of the input | |
that is padding can be expected. | |
Args: | |
embed_dim: Total dimension of the model. | |
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split | |
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). | |
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). | |
bias: If specified, adds bias to input / output projection layers. Default: ``True``. | |
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. | |
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. | |
Default: ``False``. | |
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). | |
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). | |
batch_first: If ``True``, then the input and output tensors are provided | |
as (batch, seq, feature). Default: ``False`` (seq, batch, feature). | |
Examples:: | |
>>> # xdoctest: +SKIP | |
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) | |
>>> attn_output, attn_output_weights = multihead_attn(query, key, value) | |
""" | |
__constants__ = ["batch_first"] | |
bias_k: Optional[torch.Tensor] | |
bias_v: Optional[torch.Tensor] | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
dropout=0.0, | |
bias=True, | |
add_bias_kv=False, | |
add_zero_attn=False, | |
kdim=None, | |
vdim=None, | |
batch_first=False, | |
linear1_cls=Linear, | |
linear2_cls=Linear, | |
device=None, | |
dtype=None, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(MultiheadAttention, self).__init__() | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self._qkv_same_embed_dim = ( | |
self.kdim == embed_dim and self.vdim == embed_dim | |
) | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.batch_first = batch_first | |
self.head_dim = embed_dim // num_heads | |
assert ( | |
self.head_dim * num_heads == self.embed_dim | |
), "embed_dim must be divisible by num_heads" | |
if add_bias_kv: | |
self.bias_k = Parameter( | |
torch.empty((1, 1, embed_dim), **factory_kwargs) | |
) | |
self.bias_v = Parameter( | |
torch.empty((1, 1, embed_dim), **factory_kwargs) | |
) | |
else: | |
self.bias_k = self.bias_v = None | |
if linear1_cls == Linear: | |
if not self._qkv_same_embed_dim: | |
self.q_proj_weight = Parameter( | |
torch.empty((embed_dim, embed_dim), **factory_kwargs) | |
) | |
self.k_proj_weight = Parameter( | |
torch.empty((embed_dim, self.kdim), **factory_kwargs) | |
) | |
self.v_proj_weight = Parameter( | |
torch.empty((embed_dim, self.vdim), **factory_kwargs) | |
) | |
self.register_parameter("in_proj_weight", None) | |
else: | |
self.in_proj_weight = Parameter( | |
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs) | |
) | |
self.register_parameter("q_proj_weight", None) | |
self.register_parameter("k_proj_weight", None) | |
self.register_parameter("v_proj_weight", None) | |
if bias: | |
self.in_proj_bias = Parameter( | |
torch.empty(3 * embed_dim, **factory_kwargs) | |
) | |
else: | |
self.register_parameter("in_proj_bias", None) | |
self.out_proj = NonDynamicallyQuantizableLinear( | |
embed_dim, embed_dim, bias=bias, **factory_kwargs | |
) | |
self._reset_parameters() | |
else: | |
if not self._qkv_same_embed_dim: | |
raise NotImplementedError | |
else: | |
self.in_proj_linear = linear1_cls( | |
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs | |
) | |
self.in_proj_weight = self.in_proj_linear.weight | |
self.register_parameter("q_proj_weight", None) | |
self.register_parameter("k_proj_weight", None) | |
self.register_parameter("v_proj_weight", None) | |
if bias: | |
self.in_proj_bias = self.in_proj_linear.bias | |
else: | |
self.register_parameter("in_proj_bias", None) | |
self.out_proj = linear2_cls( | |
embed_dim, embed_dim, bias=bias, **factory_kwargs | |
) | |
if self.bias_k is not None: | |
xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
xavier_normal_(self.bias_v) | |
self.add_zero_attn = add_zero_attn | |
def _reset_parameters(self): | |
if self._qkv_same_embed_dim: | |
xavier_uniform_(self.in_proj_weight) | |
else: | |
xavier_uniform_(self.q_proj_weight) | |
xavier_uniform_(self.k_proj_weight) | |
xavier_uniform_(self.v_proj_weight) | |
if self.in_proj_bias is not None: | |
constant_(self.in_proj_bias, 0.0) | |
constant_(self.out_proj.bias, 0.0) | |
if self.bias_k is not None: | |
xavier_normal_(self.bias_k) | |
if self.bias_v is not None: | |
xavier_normal_(self.bias_v) | |
def __setstate__(self, state): | |
# Support loading old MultiheadAttention checkpoints generated by v1.1.0 | |
if "_qkv_same_embed_dim" not in state: | |
state["_qkv_same_embed_dim"] = True | |
super(MultiheadAttention, self).__setstate__(state) | |
def forward( | |
self, | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, | |
attn_mask: Optional[Tensor] = None, | |
average_attn_weights: bool = True, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
r""" | |
Args: | |
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` | |
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, | |
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. | |
Queries are compared against key-value pairs to produce the output. | |
See "Attention Is All You Need" for more details. | |
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` | |
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, | |
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. | |
See "Attention Is All You Need" for more details. | |
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when | |
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source | |
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. | |
See "Attention Is All You Need" for more details. | |
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` | |
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. | |
Binary and byte masks are supported. | |
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for | |
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value. | |
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. | |
Default: ``True``. | |
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape | |
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, | |
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be | |
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. | |
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the | |
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the | |
corresponding position is not allowed to attend. For a float mask, the mask values will be added to | |
the attention weight. | |
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across | |
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an | |
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads) | |
Outputs: | |
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, | |
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, | |
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the | |
embedding dimension ``embed_dim``. | |
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, | |
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or | |
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and | |
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per | |
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`. | |
.. note:: | |
`batch_first` argument is ignored for unbatched inputs. | |
""" | |
is_batched = query.dim() == 3 | |
if key_padding_mask is not None: | |
_kpm_dtype = key_padding_mask.dtype | |
if _kpm_dtype != torch.bool and not torch.is_floating_point( | |
key_padding_mask | |
): | |
raise AssertionError( | |
"only bool and floating types of key_padding_mask are supported" | |
) | |
why_not_fast_path = "" | |
if not is_batched: | |
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" | |
elif query is not key or key is not value: | |
# When lifting this restriction, don't forget to either | |
# enforce that the dtypes all match or test cases where | |
# they don't! | |
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" | |
elif ( | |
self.in_proj_bias is not None | |
and query.dtype != self.in_proj_bias.dtype | |
): | |
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" | |
elif ( | |
self.in_proj_weight is not None | |
and query.dtype != self.in_proj_weight.dtype | |
): | |
# this case will fail anyway, but at least they'll get a useful error message. | |
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" | |
elif self.training: | |
why_not_fast_path = "training is enabled" | |
elif not self.batch_first: | |
why_not_fast_path = "batch_first was not True" | |
elif self.bias_k is not None: | |
why_not_fast_path = "self.bias_k was not None" | |
elif self.bias_v is not None: | |
why_not_fast_path = "self.bias_v was not None" | |
elif self.dropout: | |
why_not_fast_path = f"dropout was {self.dropout}, required zero" | |
elif self.add_zero_attn: | |
why_not_fast_path = "add_zero_attn was enabled" | |
elif not self._qkv_same_embed_dim: | |
why_not_fast_path = "_qkv_same_embed_dim was not True" | |
elif attn_mask is not None: | |
why_not_fast_path = "attn_mask was not None" | |
elif query.is_nested and key_padding_mask is not None: | |
why_not_fast_path = ( | |
"key_padding_mask is not supported with NestedTensor input" | |
) | |
elif self.num_heads % 2 == 1: | |
why_not_fast_path = "num_heads is odd" | |
elif torch.is_autocast_enabled(): | |
why_not_fast_path = "autocast is enabled" | |
if not why_not_fast_path: | |
tensor_args = ( | |
query, | |
key, | |
value, | |
self.in_proj_weight, | |
self.in_proj_bias, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
) | |
# We have to use list comprehensions below because TorchScript does not support | |
# generator expressions. | |
if torch.overrides.has_torch_function(tensor_args): | |
why_not_fast_path = "some Tensor argument has_torch_function" | |
elif not all( | |
[ | |
(x is None or x.is_cuda or "cpu" in str(x.device)) | |
for x in tensor_args | |
] | |
): | |
why_not_fast_path = ( | |
"some Tensor argument is neither CUDA nor CPU" | |
) | |
elif torch.is_grad_enabled() and any( | |
[x is not None and x.requires_grad for x in tensor_args] | |
): | |
why_not_fast_path = ( | |
"grad is enabled and at least one of query or the " | |
"input/output projection weights or biases requires_grad" | |
) | |
if not why_not_fast_path: | |
return torch._native_multi_head_attention( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
self.in_proj_weight, | |
self.in_proj_bias, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
key_padding_mask | |
if key_padding_mask is not None | |
else attn_mask, | |
need_weights, | |
average_attn_weights, | |
1 | |
if key_padding_mask is not None | |
else 0 | |
if attn_mask is not None | |
else None, | |
) | |
any_nested = query.is_nested or key.is_nested or value.is_nested | |
assert not any_nested, ( | |
"MultiheadAttention does not support NestedTensor outside of its fast path. " | |
+ f"The fast path was not hit because {why_not_fast_path}" | |
) | |
if self.batch_first and is_batched: | |
# make sure that the transpose op does not affect the "is" property | |
if key is value: | |
if query is key: | |
query = key = value = query.transpose(1, 0) | |
else: | |
query, key = [x.transpose(1, 0) for x in (query, key)] | |
value = key | |
else: | |
query, key, value = [ | |
x.transpose(1, 0) for x in (query, key, value) | |
] | |
if not self._qkv_same_embed_dim: | |
attn_output, attn_output_weights = F.multi_head_attention_forward( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
self.in_proj_weight, | |
self.in_proj_bias, | |
self.bias_k, | |
self.bias_v, | |
self.add_zero_attn, | |
self.dropout, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, | |
need_weights=need_weights, | |
attn_mask=attn_mask, | |
use_separate_proj_weight=True, | |
q_proj_weight=self.q_proj_weight, | |
k_proj_weight=self.k_proj_weight, | |
v_proj_weight=self.v_proj_weight, | |
average_attn_weights=average_attn_weights, | |
) | |
else: | |
attn_output, attn_output_weights = F.multi_head_attention_forward( | |
query, | |
key, | |
value, | |
self.embed_dim, | |
self.num_heads, | |
self.in_proj_weight, | |
self.in_proj_bias, | |
self.bias_k, | |
self.bias_v, | |
self.add_zero_attn, | |
self.dropout, | |
self.out_proj.weight, | |
self.out_proj.bias, | |
training=self.training, | |
key_padding_mask=key_padding_mask, | |
need_weights=need_weights, | |
attn_mask=attn_mask, | |
average_attn_weights=average_attn_weights, | |
) | |
if self.batch_first and is_batched: | |
return attn_output.transpose(1, 0), attn_output_weights | |
else: | |
return attn_output, attn_output_weights | |
def infer(self, | |
x: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, | |
attn_mask: Optional[Tensor] = None, | |
average_attn_weights: bool = True, | |
past_kv = None, | |
use_cache = False | |
): | |
# x = x.transpose(1, 0) | |
y, kv = multi_head_attention_forward( | |
x=x, | |
ipw=self.in_proj_weight, | |
ipb=self.in_proj_bias, | |
opw=self.out_proj.weight, | |
opb=self.out_proj.bias, | |
n_head=self.num_heads, | |
attn_mask=attn_mask, | |
past_kv=past_kv, | |
use_cache=use_cache, | |
) | |
return (y, kv) | |