Spaces:
Running
on
Zero
Running
on
Zero
Update webui.py
Browse files
webui.py
CHANGED
@@ -1,117 +1,119 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import torchaudio
|
4 |
-
import librosa
|
5 |
-
import numpy as np
|
6 |
-
import os
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
import yaml
|
9 |
-
from modules.commons import recursive_munch, build_model
|
10 |
-
|
11 |
-
# setup device
|
12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
|
14 |
-
|
15 |
-
# load model
|
16 |
-
def load_model(repo_id):
|
17 |
-
ckpt_path = hf_hub_download(repo_id, "pytorch_model.bin", cache_dir="./checkpoints")
|
18 |
-
config_path = hf_hub_download(repo_id, "config.yml", cache_dir="./checkpoints")
|
19 |
-
|
20 |
-
config = yaml.safe_load(open(config_path))
|
21 |
-
model_params = recursive_munch(config['model_params'])
|
22 |
-
|
23 |
-
if "redecoder" in repo_id:
|
24 |
-
model = build_model(model_params, stage="redecoder")
|
25 |
-
else:
|
26 |
-
model = build_model(model_params, stage="codec")
|
27 |
-
|
28 |
-
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
29 |
-
|
30 |
-
for key in model:
|
31 |
-
model[key].load_state_dict(ckpt_params[key])
|
32 |
-
model[key].eval()
|
33 |
-
model[key].to(device)
|
34 |
-
|
35 |
-
return model
|
36 |
-
|
37 |
-
|
38 |
-
# load models
|
39 |
-
codec_model = load_model("Plachta/FAcodec")
|
40 |
-
redecoder_model = load_model("Plachta/FAcodec-redecoder")
|
41 |
-
|
42 |
-
|
43 |
-
# preprocess audio
|
44 |
-
def preprocess_audio(audio_path, sr=24000):
|
45 |
-
audio = librosa.load(audio_path, sr=sr)[0]
|
46 |
-
# if audio has two channels, take the first one
|
47 |
-
if len(audio.shape) > 1:
|
48 |
-
audio = audio[0]
|
49 |
-
audio = audio[:sr * 30] # crop only the first 30 seconds
|
50 |
-
return torch.tensor(audio).unsqueeze(0).float().to(device)
|
51 |
-
|
52 |
-
|
53 |
-
# audio reconstruction function
|
54 |
-
@torch.no_grad()
|
55 |
-
def reconstruct_audio(audio):
|
56 |
-
source_audio = preprocess_audio(audio)
|
57 |
-
|
58 |
-
z = codec_model.encoder(source_audio[None, ...])
|
59 |
-
z, _, _, _, _ = codec_model.quantizer(z, source_audio[None, ...], n_c=2)
|
60 |
-
|
61 |
-
reconstructed_wave = codec_model.decoder(z)
|
62 |
-
|
63 |
-
return (24000, reconstructed_wave[0, 0].cpu().numpy())
|
64 |
-
|
65 |
-
|
66 |
-
# voice conversion function
|
67 |
-
@torch.no_grad()
|
68 |
-
def voice_conversion(source_audio, target_audio):
|
69 |
-
source_audio = preprocess_audio(source_audio)
|
70 |
-
target_audio = preprocess_audio(target_audio)
|
71 |
-
|
72 |
-
z = codec_model.encoder(source_audio[None, ...])
|
73 |
-
z, _, _, _, timbre, codes = codec_model.quantizer(z, source_audio[None, ...], n_c=2, return_codes=True)
|
74 |
-
|
75 |
-
z_target = codec_model.encoder(target_audio[None, ...])
|
76 |
-
_, _, _, _, timbre_target, _ = codec_model.quantizer(z_target, target_audio[None, ...], n_c=2, return_codes=True)
|
77 |
-
|
78 |
-
z_converted = redecoder_model.encoder(codes[0], codes[1], timbre_target, use_p_code=False, n_c=1)
|
79 |
-
converted_wave = redecoder_model.decoder(z_converted)
|
80 |
-
|
81 |
-
return (24000, converted_wave[0, 0].cpu().numpy())
|
82 |
-
|
83 |
-
|
84 |
-
# gradio interface
|
85 |
-
def gradio_interface():
|
86 |
-
with gr.Blocks() as demo:
|
87 |
-
gr.Markdown(
|
88 |
-
"# FAcodec reconstruction and voice conversion"
|
89 |
-
"[![GitHub stars](https://img.shields.io/github/stars/
|
90 |
-
|
91 |
-
|
92 |
-
"
|
93 |
-
"the
|
94 |
-
"
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import yaml
|
9 |
+
from modules.commons import recursive_munch, build_model
|
10 |
+
|
11 |
+
# setup device
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
|
15 |
+
# load model
|
16 |
+
def load_model(repo_id):
|
17 |
+
ckpt_path = hf_hub_download(repo_id, "pytorch_model.bin", cache_dir="./checkpoints")
|
18 |
+
config_path = hf_hub_download(repo_id, "config.yml", cache_dir="./checkpoints")
|
19 |
+
|
20 |
+
config = yaml.safe_load(open(config_path))
|
21 |
+
model_params = recursive_munch(config['model_params'])
|
22 |
+
|
23 |
+
if "redecoder" in repo_id:
|
24 |
+
model = build_model(model_params, stage="redecoder")
|
25 |
+
else:
|
26 |
+
model = build_model(model_params, stage="codec")
|
27 |
+
|
28 |
+
ckpt_params = torch.load(ckpt_path, map_location="cpu")
|
29 |
+
|
30 |
+
for key in model:
|
31 |
+
model[key].load_state_dict(ckpt_params[key])
|
32 |
+
model[key].eval()
|
33 |
+
model[key].to(device)
|
34 |
+
|
35 |
+
return model
|
36 |
+
|
37 |
+
|
38 |
+
# load models
|
39 |
+
codec_model = load_model("Plachta/FAcodec")
|
40 |
+
redecoder_model = load_model("Plachta/FAcodec-redecoder")
|
41 |
+
|
42 |
+
|
43 |
+
# preprocess audio
|
44 |
+
def preprocess_audio(audio_path, sr=24000):
|
45 |
+
audio = librosa.load(audio_path, sr=sr)[0]
|
46 |
+
# if audio has two channels, take the first one
|
47 |
+
if len(audio.shape) > 1:
|
48 |
+
audio = audio[0]
|
49 |
+
audio = audio[:sr * 30] # crop only the first 30 seconds
|
50 |
+
return torch.tensor(audio).unsqueeze(0).float().to(device)
|
51 |
+
|
52 |
+
|
53 |
+
# audio reconstruction function
|
54 |
+
@torch.no_grad()
|
55 |
+
def reconstruct_audio(audio):
|
56 |
+
source_audio = preprocess_audio(audio)
|
57 |
+
|
58 |
+
z = codec_model.encoder(source_audio[None, ...])
|
59 |
+
z, _, _, _, _ = codec_model.quantizer(z, source_audio[None, ...], n_c=2)
|
60 |
+
|
61 |
+
reconstructed_wave = codec_model.decoder(z)
|
62 |
+
|
63 |
+
return (24000, reconstructed_wave[0, 0].cpu().numpy())
|
64 |
+
|
65 |
+
|
66 |
+
# voice conversion function
|
67 |
+
@torch.no_grad()
|
68 |
+
def voice_conversion(source_audio, target_audio):
|
69 |
+
source_audio = preprocess_audio(source_audio)
|
70 |
+
target_audio = preprocess_audio(target_audio)
|
71 |
+
|
72 |
+
z = codec_model.encoder(source_audio[None, ...])
|
73 |
+
z, _, _, _, timbre, codes = codec_model.quantizer(z, source_audio[None, ...], n_c=2, return_codes=True)
|
74 |
+
|
75 |
+
z_target = codec_model.encoder(target_audio[None, ...])
|
76 |
+
_, _, _, _, timbre_target, _ = codec_model.quantizer(z_target, target_audio[None, ...], n_c=2, return_codes=True)
|
77 |
+
|
78 |
+
z_converted = redecoder_model.encoder(codes[0], codes[1], timbre_target, use_p_code=False, n_c=1)
|
79 |
+
converted_wave = redecoder_model.decoder(z_converted)
|
80 |
+
|
81 |
+
return (24000, converted_wave[0, 0].cpu().numpy())
|
82 |
+
|
83 |
+
|
84 |
+
# gradio interface
|
85 |
+
def gradio_interface():
|
86 |
+
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown(
|
88 |
+
"# FAcodec reconstruction and voice conversion"
|
89 |
+
"[![GitHub stars](https://img.shields.io/github/stars/Plachtaa/FAcodec)](https://github.com/Plachtaa/FAcodec)"
|
90 |
+
)
|
91 |
+
gr.Markdown(
|
92 |
+
"FAcodec from [Natural Speech 3](https://arxiv.org/pdf/2403.03100). <br>The checkpoint used in this demo is trained on an improved pipeline "
|
93 |
+
"where all kinds of annotations are not required, enabling the scale up of training data. <br>This model is "
|
94 |
+
"trained on 50k hours 24000Hz speech data with over 1 million speakers, largely improved timbre diversity compared to "
|
95 |
+
"the [original FAcodec](https://huggingface.co/spaces/amphion/naturalspeech3_facodec)."
|
96 |
+
"<br><br>This project is supported by [Amphion](https://github.com/open-mmlab/Amphion)"
|
97 |
+
)
|
98 |
+
|
99 |
+
with gr.Tab("reconstruction"):
|
100 |
+
with gr.Row():
|
101 |
+
input_audio = gr.Audio(type="filepath", label="Input audio")
|
102 |
+
output_audio = gr.Audio(label="Reconstructed audio")
|
103 |
+
reconstruct_btn = gr.Button("Reconstruct")
|
104 |
+
reconstruct_btn.click(reconstruct_audio, inputs=[input_audio], outputs=[output_audio])
|
105 |
+
|
106 |
+
with gr.Tab("voice conversion"):
|
107 |
+
with gr.Row():
|
108 |
+
source_audio = gr.Audio(type="filepath", label="Source audio")
|
109 |
+
target_audio = gr.Audio(type="filepath", label="Reference audio")
|
110 |
+
converted_audio = gr.Audio(label="Converted audio")
|
111 |
+
convert_btn = gr.Button("Convert")
|
112 |
+
convert_btn.click(voice_conversion, inputs=[source_audio, target_audio], outputs=[converted_audio])
|
113 |
+
|
114 |
+
return demo
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
iface = gradio_interface()
|
119 |
iface.launch()
|