Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import numbers | |
from functools import partial | |
from typing import Any, Callable, List, Optional, Tuple, Union | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from .activation import MultiheadAttention | |
from .scaling import ActivationBalancer, BalancedDoubleSwish | |
from .scaling import BasicNorm as _BasicNorm | |
from .rotary_embedding import RotaryEmbedding | |
from .conv import ConvolutionModule, MultiLayeredConv1d | |
_shape_t = Union[int, List[int], torch.Size] | |
class LayerNorm(nn.Module): | |
__constants__ = ["normalized_shape", "eps", "elementwise_affine"] | |
normalized_shape: Tuple[int, ...] | |
eps: float | |
elementwise_affine: bool | |
def __init__( | |
self, | |
normalized_shape: _shape_t, | |
eps: float = 1e-5, | |
elementwise_affine: bool = True, | |
device=None, | |
dtype=None, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(LayerNorm, self).__init__() | |
if isinstance(normalized_shape, numbers.Integral): | |
# mypy error: incompatible types in assignment | |
normalized_shape = (normalized_shape,) # type: ignore[assignment] | |
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if self.elementwise_affine: | |
self.weight = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
self.bias = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
else: | |
self.register_parameter("weight", None) | |
self.register_parameter("bias", None) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
if self.elementwise_affine: | |
nn.init.ones_(self.weight) | |
nn.init.zeros_(self.bias) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return ( | |
F.layer_norm( | |
input, | |
self.normalized_shape, | |
self.weight, | |
self.bias, | |
self.eps, | |
), | |
embedding, | |
) | |
assert embedding is None | |
return F.layer_norm( | |
input, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
def extra_repr(self) -> str: | |
return ( | |
"{normalized_shape}, eps={eps}, " | |
"elementwise_affine={elementwise_affine}".format(**self.__dict__) | |
) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.project_layer = nn.Linear(d_model, 2 * d_model) | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return (weight * self.norm(input) + bias, embedding) | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return weight * self.norm(input) + bias | |
class BasicNorm(_BasicNorm): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
): | |
super(BasicNorm, self).__init__(d_model, eps=eps) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return ( | |
super(BasicNorm, self).forward(input), | |
embedding, | |
) | |
assert embedding is None | |
return super(BasicNorm, self).forward(input) | |
class BalancedBasicNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
): | |
super(BalancedBasicNorm, self).__init__() | |
self.balancer = ActivationBalancer( | |
d_model, | |
channel_dim=-1, | |
min_positive=0.45, | |
max_positive=0.55, | |
max_abs=6.0, | |
) | |
self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return self.norm((self.balancer(input), embedding)) | |
assert embedding is None | |
return self.norm(self.balancer(input)) | |
class IdentityNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
) -> None: | |
super(IdentityNorm, self).__init__() | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
return input | |
assert embedding is None | |
return input | |
class RMSNorm(nn.Module): | |
def __init__(self, d, p=-1., eps=1e-8, bias=False): | |
""" | |
Root Mean Square Layer Normalization | |
:param d: model size | |
:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled) | |
:param eps: epsilon value, default 1e-8 | |
:param bias: whether use bias term for RMSNorm, disabled by | |
default because RMSNorm doesn't enforce re-centering invariance. | |
""" | |
super(RMSNorm, self).__init__() | |
self.eps = eps | |
self.d = d | |
self.p = p | |
self.bias = bias | |
self.scale = nn.Parameter(torch.ones(d)) | |
self.register_parameter("scale", self.scale) | |
if self.bias: | |
self.offset = nn.Parameter(torch.zeros(d)) | |
self.register_parameter("offset", self.offset) | |
def forward(self, x): | |
if self.p < 0. or self.p > 1.: | |
norm_x = x.norm(2, dim=-1, keepdim=True) | |
d_x = self.d | |
else: | |
partial_size = int(self.d * self.p) | |
partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1) | |
norm_x = partial_x.norm(2, dim=-1, keepdim=True) | |
d_x = partial_size | |
rms_x = norm_x * d_x ** (-1. / 2) | |
x_normed = x / (rms_x + self.eps) | |
if self.bias: | |
return self.scale * x_normed + self.offset | |
return self.scale * x_normed | |
class TransformerEncoderLayer(nn.Module): | |
__constants__ = ["batch_first", "norm_first"] | |
def __init__( | |
self, | |
d_model: int, | |
nhead: int, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
batch_first: bool = False, | |
norm_first: bool = False, | |
device=None, | |
dtype=None, | |
linear1_self_attention_cls: nn.Module = nn.Linear, | |
linear2_self_attention_cls: nn.Module = nn.Linear, | |
linear1_feedforward_cls: nn.Module = nn.Linear, | |
linear2_feedforward_cls: nn.Module = nn.Linear, | |
layer_norm_cls: nn.Module = LayerNorm, | |
layer_norm_eps: float = 1e-5, | |
adaptive_layer_norm=False, | |
use_conv_module: bool = False, | |
use_depth_wise_conv: bool = False, | |
conv_ignore_prefix_len: int = 0, | |
cross_attention: bool = False, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(TransformerEncoderLayer, self).__init__() | |
self.self_attn = MultiheadAttention( | |
d_model, | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
if cross_attention: | |
self.has_cross_attention = True | |
self.cross_attn = nn.MultiheadAttention( | |
d_model, nhead, 0.1, batch_first=True | |
) | |
self.norm3 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
# Implementation of Feedforward model | |
self.use_depth_wise_conv = use_depth_wise_conv | |
self.use_conv_module = use_conv_module | |
if not use_depth_wise_conv: | |
self.linear1 = linear1_feedforward_cls( | |
d_model, dim_feedforward, **factory_kwargs | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = linear2_feedforward_cls( | |
dim_feedforward, d_model, **factory_kwargs | |
) | |
else: | |
self.dw_ffn = MultiLayeredConv1d( | |
in_chans=d_model, | |
hidden_chans=dim_feedforward, | |
kernel_size=5, | |
dropout_rate=dropout, | |
) | |
self.norm_first = norm_first | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
# Legacy string support for activation function. | |
if isinstance(activation, str): | |
activation = _get_activation_fn(activation) | |
elif isinstance(activation, partial): | |
activation = activation(d_model) | |
elif activation == BalancedDoubleSwish: | |
activation = BalancedDoubleSwish(d_model) | |
self.activation = activation | |
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
if layer_norm_cls == IdentityNorm: | |
norm2 = BalancedBasicNorm( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
else: | |
norm2 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
if adaptive_layer_norm: | |
self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
else: | |
self.norm1 = norm1 | |
self.norm2 = norm2 | |
self.rotary_emb = RotaryEmbedding(dim=d_model // nhead) | |
if use_conv_module: | |
self.conv_module = ConvolutionModule( | |
d_model, | |
kernel_size=31, | |
activation=activation, | |
ignore_prefix_len=conv_ignore_prefix_len, | |
) | |
self.norm_conv = LayerNorm(d_model) # for the CNN module | |
if adaptive_layer_norm: | |
self.norm_conv = AdaptiveLayerNorm(d_model, self.norm_conv) | |
else: | |
self.conv_module = None | |
def __setstate__(self, state): | |
super(TransformerEncoderLayer, self).__setstate__(state) | |
if not hasattr(self, "activation"): | |
self.activation = F.relu | |
def forward( | |
self, | |
src: Tensor, | |
context: Optional[Tensor] = None, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
use_rope: bool = False, | |
) -> Tensor: | |
r"""Pass the input through the encoder layer. | |
Args: | |
src: the sequence to the encoder layer (required). | |
src_mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
is_src_tuple = False | |
if isinstance(src, tuple): | |
x, stage_embedding = src | |
is_src_tuple = True | |
else: | |
x, stage_embedding = src, None | |
if src_key_padding_mask is not None: | |
_skpm_dtype = src_key_padding_mask.dtype | |
if _skpm_dtype != torch.bool and not torch.is_floating_point( | |
src_key_padding_mask | |
): | |
raise AssertionError( | |
"only bool and floating types of key_padding_mask are supported" | |
) | |
if self.norm_first: | |
x = x + self._sa_block( | |
self.norm1(x, stage_embedding), | |
src_mask, | |
src_key_padding_mask, | |
use_rope=use_rope, | |
) | |
if self.conv_module is not None: | |
residual = x | |
x = self.norm_conv(x, stage_embedding) | |
x = residual + self.dropout1(self.conv_module(x)) | |
# if self.has_cross_attention: | |
# x = x + self.cross_attn( | |
# self.norm3(x, stage_embedding), | |
# context, | |
# context, | |
# attn_mask=src_mask, | |
# )[0] | |
x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
else: | |
x = self.norm1( | |
x + self._sa_block(x, src_mask, src_key_padding_mask, use_rope=use_rope), | |
stage_embedding, | |
) | |
if self.conv_module is not None: | |
residual = x | |
x = residual + self.dropout(self.conv_module(x)) | |
x = self.norm_conv(x, stage_embedding) | |
x = self.norm2(x + self._ff_block(x), stage_embedding) | |
if is_src_tuple: | |
return (x, stage_embedding) | |
return x | |
def infer( | |
self, | |
src: Tensor, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
past_kv: Optional[Tensor] = None, | |
use_cache: bool = False, | |
use_rope: bool = False, | |
): | |
x, stage_embedding = src, None | |
is_src_tuple = False | |
if isinstance(src, tuple): | |
x, stage_embedding = src | |
is_src_tuple = True | |
if src_key_padding_mask is not None: | |
_skpm_dtype = src_key_padding_mask.dtype | |
if _skpm_dtype != torch.bool and not torch.is_floating_point( | |
src_key_padding_mask | |
): | |
raise AssertionError( | |
"only bool and floating types of key_padding_mask are supported" | |
) | |
if self.norm_first: | |
x_attn_out, kv = self.self_attn.infer( | |
self.norm1(x, stage_embedding), | |
attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask, | |
need_weights=False, | |
past_kv=past_kv, | |
use_cache=use_cache, | |
use_rope=use_rope, | |
rope=self.rotary_emb | |
) | |
x = x + x_attn_out | |
x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
if is_src_tuple: | |
return (x, stage_embedding) | |
return (x, kv) | |
# self-attention block | |
def _sa_block( | |
self, | |
x: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
use_rope: bool = False, | |
) -> Tensor: | |
x = self.self_attn( | |
x, | |
x, | |
x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
use_rope=use_rope, | |
rope=self.rotary_emb | |
)[0] | |
return self.dropout1(x) | |
# feed forward block | |
def _ff_block(self, x: Tensor) -> Tensor: | |
if self.use_depth_wise_conv: | |
x = self.dw_ffn(x) | |
else: | |
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
return self.dropout2(x) | |
class TransformerEncoder(nn.Module): | |
r"""TransformerEncoder is a stack of N encoder layers. Users can build the | |
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. | |
Args: | |
encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
num_layers: the number of sub-encoder-layers in the encoder (required). | |
norm: the layer normalization component (optional). | |
enable_nested_tensor: if True, input will automatically convert to nested tensor | |
(and convert back on output). This will improve the overall performance of | |
TransformerEncoder when padding rate is high. Default: ``True`` (enabled). | |
Examples:: | |
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) | |
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) | |
>>> src = torch.rand(10, 32, 512) | |
>>> out = transformer_encoder(src) | |
""" | |
__constants__ = ["norm"] | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super(TransformerEncoder, self).__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward( | |
self, | |
src: Tensor, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
return_layer_states: bool = False, | |
use_rope: bool = False, | |
) -> Tensor: | |
r"""Pass the input through the encoder layers in turn. | |
Args: | |
src: the sequence to the encoder (required). | |
mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
return_layer_states: return layers' state (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
if return_layer_states: | |
layer_states = [] # layers' output | |
output = src | |
for mod in self.layers: | |
output = mod( | |
output, | |
src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, | |
use_rope=use_rope, | |
) | |
layer_states.append(output[0]) | |
if self.norm is not None: | |
output = self.norm(output) | |
return layer_states, output | |
output = src | |
for mod in self.layers: | |
output = mod( | |
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, use_rope=use_rope | |
) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
def infer( | |
self, | |
src: Tensor, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
return_layer_states: bool = False, | |
past_kv: Optional[Tensor] = None, | |
use_cache: bool = False, | |
use_rope: bool = False, | |
): | |
if past_kv is None: | |
past_length = 0 | |
past_kv = tuple([None] * self.num_layers) | |
else: | |
past_length = past_kv[0][0].size(-2) | |
new_kv = () if use_cache else None | |
output = src | |
for mod, past_layer_kv in zip(self.layers, past_kv): | |
output, kv = mod.infer( | |
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, past_kv=past_layer_kv, use_cache=use_cache, use_rope=use_rope | |
) | |
if use_cache: | |
new_kv = new_kv + (kv,) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output, new_kv | |
class TransformerDecoderLayer(nn.Module): | |
__constants__ = ["batch_first", "norm_first"] | |
def __init__( | |
self, | |
d_model: int, | |
nhead: int, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
linear1_self_attention_cls: nn.Module = nn.Linear, | |
linear2_self_attention_cls: nn.Module = nn.Linear, | |
linear1_feedforward_cls: nn.Module = nn.Linear, | |
linear2_feedforward_cls: nn.Module = nn.Linear, | |
batch_first: bool = False, | |
norm_first: bool = False, | |
device=None, | |
dtype=None, | |
layer_norm_cls: nn.Module = LayerNorm, | |
layer_norm_eps: float = 1e-5, | |
adaptive_layer_norm=False, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(TransformerDecoderLayer, self).__init__() | |
self.self_attn = MultiheadAttention( | |
d_model, | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
self.multihead_attn = MultiheadAttention( | |
d_model, | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
# Implementation of Feedforward model | |
self.linear1 = linear1_feedforward_cls( | |
d_model, dim_feedforward, **factory_kwargs | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = linear2_feedforward_cls( | |
dim_feedforward, d_model, **factory_kwargs | |
) | |
self.norm_first = norm_first | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
# Legacy string support for activation function. | |
if isinstance(activation, str): | |
self.activation = _get_activation_fn(activation) | |
elif isinstance(activation, partial): | |
self.activation = activation(d_model) | |
elif activation == BalancedDoubleSwish: | |
self.activation = BalancedDoubleSwish(d_model) | |
else: | |
self.activation = activation | |
if adaptive_layer_norm: | |
norm1 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
norm2 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
norm3 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
self.norm3 = AdaptiveLayerNorm(d_model, norm3) | |
else: | |
self.norm1 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
self.norm2 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
if layer_norm_cls == IdentityNorm: | |
self.norm3 = BalancedBasicNorm( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
else: | |
self.norm3 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
self.rotary_emb = RotaryEmbedding(dim=d_model // nhead) | |
def forward( | |
self, | |
tgt: Tensor, | |
memory: Tensor, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
use_rope: bool = False, | |
) -> Tensor: | |
r"""Pass the inputs (and mask) through the decoder layer. | |
Args: | |
tgt: the sequence to the decoder layer (required). | |
memory: the sequence from the last layer of the encoder (required). | |
tgt_mask: the mask for the tgt sequence (optional). | |
memory_mask: the mask for the memory sequence (optional). | |
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
tgt_is_tuple = False | |
if isinstance(tgt, tuple): | |
x, stage_embedding = tgt | |
tgt_is_tuple = True | |
else: | |
x, stage_embedding = tgt, None | |
if self.norm_first: | |
x = x + self._sa_block( | |
self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask, use_rope=use_rope, | |
) | |
x_mha_out, attn_map = self._mha_block( | |
self.norm2(x, stage_embedding), | |
memory, | |
memory_mask, | |
memory_key_padding_mask, | |
use_rope=use_rope, | |
) | |
x = x + x_mha_out | |
x = x + self._ff_block(self.norm3(x, stage_embedding)) | |
else: | |
x = self.norm1( | |
x + self._sa_block(x, tgt_mask, tgt_key_padding_mask), | |
stage_embedding, | |
) | |
x = self.norm2( | |
x | |
+ self._mha_block( | |
x, memory, memory_mask, memory_key_padding_mask | |
), | |
stage_embedding, | |
) | |
x = self.norm3(x + self._ff_block(x), stage_embedding) | |
if tgt_is_tuple: | |
return (x, stage_embedding) | |
return x, attn_map | |
# self-attention block | |
def _sa_block( | |
self, | |
x: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
use_rope: bool = False, | |
) -> Tensor: | |
x = self.self_attn( | |
x, | |
x, | |
x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
use_rope=use_rope, | |
rope=self.rotary_emb | |
)[0] | |
return self.dropout1(x) | |
# multihead attention block | |
def _mha_block( | |
self, | |
x: Tensor, | |
mem: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
use_rope: bool = False, | |
) -> Tensor: | |
x = self.multihead_attn( | |
x, | |
mem, | |
mem, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
use_rope=use_rope, | |
rope=self.rotary_emb | |
)[0] | |
x, attn_map = x | |
return self.dropout2(x[0]), attn_map | |
# feed forward block | |
def _ff_block(self, x: Tensor) -> Tensor: | |
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
return self.dropout3(x) | |
class TransformerDecoder(nn.Module): | |
r"""TransformerDecoder is a stack of N decoder layers. Users can build the | |
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. | |
Args: | |
decoder_layer: an instance of the TransformerDecoderLayer() class (required). | |
num_layers: the number of sub-decoder-layers in the decoder (required). | |
norm: the layer normalization component (optional). | |
enable_nested_tensor: if True, input will automatically convert to nested tensor | |
(and convert back on output). This will improve the overall performance of | |
TransformerDecoder when padding rate is high. Default: ``True`` (enabled). | |
Examples:: | |
>>> decoder_layer = TransformerDecoderLayer(d_model=512, nhead=8) | |
>>> transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6) | |
>>> tgt = torch.rand(10, 32, 512) | |
>>> memory = torch.rand(20, 32, 512) | |
>>> out = transformer_decoder(tgt, memory) | |
""" | |
__constants__ = ["norm"] | |
def __init__(self, decoder_layer, num_layers, norm=None): | |
super(TransformerDecoder, self).__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward( | |
self, | |
tgt: Tensor, | |
memory: Tensor, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
return_attn: bool = False, | |
use_rope: bool = False, | |
) -> Tensor: | |
r"""Pass the inputs (and mask) through the decoder layers in turn. | |
Args: | |
tgt: the sequence to the decoder (required). | |
memory: the sequence from the last layer of the encoder (required). | |
tgt_mask: the mask for the tgt sequence (optional). | |
memory_mask: the mask for the memory sequence (optional). | |
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
return_attn: return cross attention maps of each layer (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
attn_maps = [] | |
output = tgt | |
for mod in self.layers: | |
output, attn_map = mod( | |
output, | |
memory, | |
tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
use_rope=use_rope, | |
) | |
if return_attn: | |
attn_maps.append(attn_map) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output, attn_maps | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: | |
if activation == "relu": | |
return F.relu | |
elif activation == "gelu": | |
return F.gelu | |
raise RuntimeError( | |
"activation should be relu/gelu, not {}".format(activation) | |
) | |