Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,094 Bytes
a4d0945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from torch import nn
from .fvq import FactorizedVectorQuantize
class ResidualVQ(nn.Module):
"""Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf"""
def __init__(self, *, num_quantizers, codebook_size, **kwargs):
super().__init__()
VQ = FactorizedVectorQuantize
if type(codebook_size) == int:
codebook_size = [codebook_size] * num_quantizers
self.layers = nn.ModuleList(
[VQ(codebook_size=2**size, **kwargs) for size in codebook_size]
)
self.num_quantizers = num_quantizers
self.quantizer_dropout = kwargs.get("quantizer_dropout", 0.0)
self.dropout_type = kwargs.get("dropout_type", None)
def forward(self, x, n_quantizers=None):
quantized_out = 0.0
residual = x
all_losses = []
all_indices = []
all_quantized = []
if n_quantizers is None:
n_quantizers = self.num_quantizers
if self.training:
n_quantizers = torch.ones((x.shape[0],)) * self.num_quantizers + 1
if self.dropout_type == "linear":
dropout = torch.randint(1, self.num_quantizers + 1, (x.shape[0],))
elif self.dropout_type == "exp":
dropout = torch.randint(
1, int(math.log2(self.num_quantizers)), (x.shape[0],)
)
dropout = torch.pow(2, dropout)
n_dropout = int(x.shape[0] * self.quantizer_dropout)
n_quantizers[:n_dropout] = dropout[:n_dropout]
n_quantizers = n_quantizers.to(x.device)
for idx, layer in enumerate(self.layers):
if not self.training and idx >= n_quantizers:
break
quantized, indices, loss = layer(residual)
mask = (
torch.full((x.shape[0],), fill_value=idx, device=x.device)
< n_quantizers
)
residual = residual - quantized
quantized_out = quantized_out + quantized * mask[:, None, None]
# loss
loss = (loss * mask).mean()
all_indices.append(indices)
all_losses.append(loss)
all_quantized.append(quantized)
all_losses, all_indices, all_quantized = map(
torch.stack, (all_losses, all_indices, all_quantized)
)
return quantized_out, all_indices, all_losses, all_quantized
def vq2emb(self, vq):
# vq: [n_quantizers, B, T]
quantized_out = 0.0
for idx, layer in enumerate(self.layers):
quantized = layer.vq2emb(vq[idx])
quantized_out += quantized
return quantized_out
def get_emb(self):
embs = []
for idx, layer in enumerate(self.layers):
embs.append(layer.get_emb())
return embs
|