Spaces:
Sleeping
Sleeping
handled punkt error2
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import logging
|
|
3 |
import re
|
4 |
import nltk
|
5 |
import spacy
|
|
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
from langchain.vectorstores import Chroma
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
@@ -18,18 +19,6 @@ import gradio as gr
|
|
18 |
import pandas as pd
|
19 |
import json
|
20 |
|
21 |
-
# Download required NLTK resources
|
22 |
-
nltk.download('punkt')
|
23 |
-
|
24 |
-
# Load spaCy English model
|
25 |
-
try:
|
26 |
-
nlp = spacy.load("en_core_web_sm")
|
27 |
-
except OSError:
|
28 |
-
# If the model is not found, download it
|
29 |
-
from spacy.cli import download
|
30 |
-
download("en_core_web_sm")
|
31 |
-
nlp = spacy.load("en_core_web_sm")
|
32 |
-
|
33 |
# Enable logging for debugging
|
34 |
logging.basicConfig(level=logging.DEBUG)
|
35 |
logger = logging.getLogger(__name__)
|
@@ -49,6 +38,32 @@ api_key = clean_api_key(api_key).strip() # Clean and strip whitespace
|
|
49 |
def clean_text(text):
|
50 |
return text.encode("ascii", errors="ignore").decode()
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Function to load and clean documents from multiple file formats
|
53 |
def load_documents(file_paths):
|
54 |
docs = []
|
@@ -84,14 +99,32 @@ def load_documents(file_paths):
|
|
84 |
logger.warning(f"Unsupported file format: {file_path}")
|
85 |
except Exception as e:
|
86 |
logger.error(f"Error processing file {file_path}: {e}")
|
|
|
87 |
return docs
|
88 |
|
89 |
# Function to ensure the response ends with complete sentences using NLTK
|
90 |
def ensure_complete_sentences(text):
|
91 |
-
sentences
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# Advanced input validation using spaCy (Section 8a)
|
97 |
def is_valid_input_nlp(text, threshold=0.5):
|
@@ -106,12 +139,15 @@ def is_valid_input_nlp(text, threshold=0.5):
|
|
106 |
- bool: True if the input is valid, False otherwise.
|
107 |
"""
|
108 |
if not text or text.strip() == "":
|
|
|
109 |
return False
|
110 |
doc = nlp(text)
|
111 |
meaningful_tokens = [token for token in doc if token.is_alpha]
|
112 |
if not meaningful_tokens:
|
|
|
113 |
return False
|
114 |
ratio = len(meaningful_tokens) / len(doc)
|
|
|
115 |
return ratio >= threshold
|
116 |
|
117 |
# Function to estimate prompt tokens (simple word count approximation)
|
@@ -133,9 +169,11 @@ def initialize_llm(model, temperature, max_tokens, prompt_template):
|
|
133 |
try:
|
134 |
# Estimate prompt tokens
|
135 |
estimated_prompt_tokens = estimate_prompt_tokens(prompt_template)
|
|
|
136 |
|
137 |
# Allocate remaining tokens to response
|
138 |
response_max_tokens = max_tokens - estimated_prompt_tokens
|
|
|
139 |
|
140 |
if response_max_tokens <= 100:
|
141 |
raise ValueError("max_tokens is too small to allocate for the response.")
|
@@ -150,7 +188,8 @@ def initialize_llm(model, temperature, max_tokens, prompt_template):
|
|
150 |
return llm
|
151 |
except Exception as e:
|
152 |
logger.error(f"Error initializing LLM: {e}")
|
153 |
-
|
|
|
154 |
|
155 |
# Create the RAG pipeline
|
156 |
def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
@@ -173,6 +212,7 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
173 |
|
174 |
# Estimate prompt tokens
|
175 |
estimated_prompt_tokens = estimate_prompt_tokens(custom_prompt_template.template)
|
|
|
176 |
|
177 |
# Initialize the LLM with token allocation
|
178 |
llm = initialize_llm(model, temperature, max_tokens, custom_prompt_template.template)
|
@@ -186,15 +226,17 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
186 |
# Split documents into chunks
|
187 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
188 |
splits = text_splitter.split_documents(docs)
|
|
|
189 |
|
190 |
# Initialize the embedding model
|
191 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
192 |
|
193 |
-
# Use a
|
194 |
vectorstore = Chroma.from_documents(
|
195 |
documents=splits,
|
196 |
embedding=embedding_model,
|
197 |
-
persist_directory="
|
198 |
)
|
199 |
vectorstore.persist() # Save the database to disk
|
200 |
logger.debug("Vectorstore initialized and persisted successfully.")
|
@@ -212,6 +254,7 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
212 |
return rag_chain, "Pipeline created successfully."
|
213 |
except Exception as e:
|
214 |
logger.error(f"Error creating RAG pipeline: {e}")
|
|
|
215 |
return None, f"Error creating RAG pipeline: {e}"
|
216 |
|
217 |
# Function to handle feedback (Section 8d)
|
@@ -235,27 +278,36 @@ def handle_feedback(feedback_text):
|
|
235 |
|
236 |
# Function to answer questions with input validation and post-processing
|
237 |
def answer_question(file_paths, model, temperature, max_tokens, question, feedback):
|
238 |
-
# Validate input using spaCy-based validation
|
239 |
-
if not is_valid_input_nlp(question):
|
240 |
-
return "Please provide a valid question or input containing meaningful text.", ""
|
241 |
-
|
242 |
-
rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
|
243 |
-
if rag_chain is None:
|
244 |
-
return message, ""
|
245 |
-
|
246 |
try:
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
# Gradio Interface with Feedback Mechanism (Section 8d)
|
261 |
def gradio_interface(model, temperature, max_tokens, question, feedback):
|
|
|
3 |
import re
|
4 |
import nltk
|
5 |
import spacy
|
6 |
+
import traceback
|
7 |
from nltk.tokenize import sent_tokenize
|
8 |
from langchain.vectorstores import Chroma
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
19 |
import pandas as pd
|
20 |
import json
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Enable logging for debugging
|
23 |
logging.basicConfig(level=logging.DEBUG)
|
24 |
logger = logging.getLogger(__name__)
|
|
|
38 |
def clean_text(text):
|
39 |
return text.encode("ascii", errors="ignore").decode()
|
40 |
|
41 |
+
# Download required NLTK resources
|
42 |
+
try:
|
43 |
+
nltk.download('punkt', download_dir='/tmp/nltk_data')
|
44 |
+
nltk.data.path.append('/tmp/nltk_data')
|
45 |
+
logger.debug("NLTK 'punkt' resource downloaded successfully.")
|
46 |
+
except Exception as e:
|
47 |
+
logger.error("Failed to download NLTK 'punkt' resource.")
|
48 |
+
logger.error(traceback.format_exc())
|
49 |
+
raise e
|
50 |
+
|
51 |
+
# Load spaCy English model
|
52 |
+
try:
|
53 |
+
nlp = spacy.load("en_core_web_sm")
|
54 |
+
logger.debug("spaCy 'en_core_web_sm' model loaded successfully.")
|
55 |
+
except OSError:
|
56 |
+
try:
|
57 |
+
logger.debug("spaCy model not found. Downloading 'en_core_web_sm'.")
|
58 |
+
from spacy.cli import download
|
59 |
+
download("en_core_web_sm")
|
60 |
+
nlp = spacy.load("en_core_web_sm")
|
61 |
+
logger.debug("spaCy 'en_core_web_sm' model downloaded and loaded successfully.")
|
62 |
+
except Exception as e:
|
63 |
+
logger.error("Failed to download and load spaCy 'en_core_web_sm' model.")
|
64 |
+
logger.error(traceback.format_exc())
|
65 |
+
raise e
|
66 |
+
|
67 |
# Function to load and clean documents from multiple file formats
|
68 |
def load_documents(file_paths):
|
69 |
docs = []
|
|
|
99 |
logger.warning(f"Unsupported file format: {file_path}")
|
100 |
except Exception as e:
|
101 |
logger.error(f"Error processing file {file_path}: {e}")
|
102 |
+
logger.error(traceback.format_exc())
|
103 |
return docs
|
104 |
|
105 |
# Function to ensure the response ends with complete sentences using NLTK
|
106 |
def ensure_complete_sentences(text):
|
107 |
+
logger.debug("Ensuring complete sentences for the given text.")
|
108 |
+
try:
|
109 |
+
sentences = sent_tokenize(text)
|
110 |
+
if sentences:
|
111 |
+
return ' '.join(sentences).strip()
|
112 |
+
return text # Return as is if no complete sentence is found
|
113 |
+
except LookupError as e:
|
114 |
+
logger.error("NLTK resource 'punkt' not found. Attempting to download again.")
|
115 |
+
try:
|
116 |
+
nltk.download('punkt', download_dir='/tmp/nltk_data')
|
117 |
+
nltk.data.path.append('/tmp/nltk_data')
|
118 |
+
sentences = sent_tokenize(text)
|
119 |
+
return ' '.join(sentences).strip()
|
120 |
+
except Exception as e_inner:
|
121 |
+
logger.error("Failed to download 'punkt' resource.")
|
122 |
+
logger.error(traceback.format_exc())
|
123 |
+
raise e_inner
|
124 |
+
except Exception as e:
|
125 |
+
logger.error("Unexpected error during sentence tokenization.")
|
126 |
+
logger.error(traceback.format_exc())
|
127 |
+
raise e
|
128 |
|
129 |
# Advanced input validation using spaCy (Section 8a)
|
130 |
def is_valid_input_nlp(text, threshold=0.5):
|
|
|
139 |
- bool: True if the input is valid, False otherwise.
|
140 |
"""
|
141 |
if not text or text.strip() == "":
|
142 |
+
logger.debug("Input text is empty or contains only whitespace.")
|
143 |
return False
|
144 |
doc = nlp(text)
|
145 |
meaningful_tokens = [token for token in doc if token.is_alpha]
|
146 |
if not meaningful_tokens:
|
147 |
+
logger.debug("No meaningful (alphabetic) tokens found in input.")
|
148 |
return False
|
149 |
ratio = len(meaningful_tokens) / len(doc)
|
150 |
+
logger.debug(f"Meaningful tokens ratio: {ratio}")
|
151 |
return ratio >= threshold
|
152 |
|
153 |
# Function to estimate prompt tokens (simple word count approximation)
|
|
|
169 |
try:
|
170 |
# Estimate prompt tokens
|
171 |
estimated_prompt_tokens = estimate_prompt_tokens(prompt_template)
|
172 |
+
logger.debug(f"Estimated prompt tokens: {estimated_prompt_tokens}")
|
173 |
|
174 |
# Allocate remaining tokens to response
|
175 |
response_max_tokens = max_tokens - estimated_prompt_tokens
|
176 |
+
logger.debug(f"Response max tokens: {response_max_tokens}")
|
177 |
|
178 |
if response_max_tokens <= 100:
|
179 |
raise ValueError("max_tokens is too small to allocate for the response.")
|
|
|
188 |
return llm
|
189 |
except Exception as e:
|
190 |
logger.error(f"Error initializing LLM: {e}")
|
191 |
+
logger.error(traceback.format_exc())
|
192 |
+
raise e
|
193 |
|
194 |
# Create the RAG pipeline
|
195 |
def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
|
212 |
|
213 |
# Estimate prompt tokens
|
214 |
estimated_prompt_tokens = estimate_prompt_tokens(custom_prompt_template.template)
|
215 |
+
logger.debug(f"Estimated prompt tokens from template: {estimated_prompt_tokens}")
|
216 |
|
217 |
# Initialize the LLM with token allocation
|
218 |
llm = initialize_llm(model, temperature, max_tokens, custom_prompt_template.template)
|
|
|
226 |
# Split documents into chunks
|
227 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
228 |
splits = text_splitter.split_documents(docs)
|
229 |
+
logger.debug(f"Documents split into {len(splits)} chunks.")
|
230 |
|
231 |
# Initialize the embedding model
|
232 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
233 |
+
logger.debug("Embedding model initialized successfully.")
|
234 |
|
235 |
+
# Use a temporary directory for Chroma vectorstore to prevent caching issues on Hugging Face Spaces
|
236 |
vectorstore = Chroma.from_documents(
|
237 |
documents=splits,
|
238 |
embedding=embedding_model,
|
239 |
+
persist_directory="/tmp/chroma_db" # Temporary storage directory
|
240 |
)
|
241 |
vectorstore.persist() # Save the database to disk
|
242 |
logger.debug("Vectorstore initialized and persisted successfully.")
|
|
|
254 |
return rag_chain, "Pipeline created successfully."
|
255 |
except Exception as e:
|
256 |
logger.error(f"Error creating RAG pipeline: {e}")
|
257 |
+
logger.error(traceback.format_exc())
|
258 |
return None, f"Error creating RAG pipeline: {e}"
|
259 |
|
260 |
# Function to handle feedback (Section 8d)
|
|
|
278 |
|
279 |
# Function to answer questions with input validation and post-processing
|
280 |
def answer_question(file_paths, model, temperature, max_tokens, question, feedback):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
try:
|
282 |
+
# Validate input using spaCy-based validation
|
283 |
+
if not is_valid_input_nlp(question):
|
284 |
+
logger.debug("Invalid input detected.")
|
285 |
+
return "Please provide a valid question or input containing meaningful text.", ""
|
286 |
|
287 |
+
rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
|
288 |
+
if rag_chain is None:
|
289 |
+
logger.debug("RAG pipeline creation failed.")
|
290 |
+
return message, ""
|
291 |
|
292 |
+
try:
|
293 |
+
answer = rag_chain.run(question)
|
294 |
+
logger.debug("Question answered successfully.")
|
295 |
+
# Post-process to ensure the answer ends with complete sentences
|
296 |
+
complete_answer = ensure_complete_sentences(answer)
|
297 |
+
|
298 |
+
# Handle feedback
|
299 |
+
feedback_response = handle_feedback(feedback)
|
300 |
+
|
301 |
+
return complete_answer, feedback_response
|
302 |
+
except Exception as e_inner:
|
303 |
+
logger.error(f"Error during RAG pipeline execution: {e_inner}")
|
304 |
+
logger.error(traceback.format_exc())
|
305 |
+
return f"Error during RAG pipeline execution: {e_inner}", ""
|
306 |
+
|
307 |
+
except Exception as e_outer:
|
308 |
+
logger.error(f"Unexpected error in answer_question: {e_outer}")
|
309 |
+
logger.error(traceback.format_exc())
|
310 |
+
return f"Unexpected error: {e_outer}", ""
|
311 |
|
312 |
# Gradio Interface with Feedback Mechanism (Section 8d)
|
313 |
def gradio_interface(model, temperature, max_tokens, question, feedback):
|