ew version
Browse files- app.py +23 -103
- nltk_data/.DS_Store +0 -0
app.py
CHANGED
@@ -16,7 +16,7 @@ import pandas as pd
|
|
16 |
import json
|
17 |
|
18 |
# Enable logging for debugging
|
19 |
-
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
# Function to clean the API key
|
@@ -100,7 +100,7 @@ def is_valid_input(text):
|
|
100 |
# Initialize the LLM using ChatGroq with GROQ's API
|
101 |
def initialize_llm(model, temperature, max_tokens):
|
102 |
try:
|
103 |
-
# Allocate a portion of tokens for the prompt
|
104 |
prompt_allocation = int(max_tokens * 0.2)
|
105 |
response_max_tokens = max_tokens - prompt_allocation
|
106 |
if response_max_tokens <= 50:
|
@@ -109,8 +109,8 @@ def initialize_llm(model, temperature, max_tokens):
|
|
109 |
llm = ChatGroq(
|
110 |
model=model,
|
111 |
temperature=temperature,
|
112 |
-
max_tokens=response_max_tokens,
|
113 |
-
api_key=api_key
|
114 |
)
|
115 |
logger.info("LLM initialized successfully.")
|
116 |
return llm
|
@@ -133,11 +133,11 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
133 |
# Initialize the embedding model
|
134 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
135 |
|
136 |
-
# Use a temporary directory for Chroma vectorstore
|
137 |
vectorstore = Chroma.from_documents(
|
138 |
documents=splits,
|
139 |
embedding=embedding_model,
|
140 |
-
persist_directory="/tmp/chroma_db"
|
141 |
)
|
142 |
vectorstore.persist() # Save the database to disk
|
143 |
logger.info("Vectorstore initialized and persisted successfully.")
|
@@ -148,13 +148,10 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
148 |
input_variables=["context", "question"],
|
149 |
template="""
|
150 |
You are an AI assistant with expertise in daily wellness. Your aim is to provide detailed and comprehensive solutions regarding daily wellness topics without unnecessary verbosity.
|
151 |
-
|
152 |
Context:
|
153 |
{context}
|
154 |
-
|
155 |
Question:
|
156 |
{question}
|
157 |
-
|
158 |
Provide a thorough and complete answer, including relevant examples and a suggested schedule. Ensure that the response does not end abruptly.
|
159 |
"""
|
160 |
)
|
@@ -172,109 +169,41 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
172 |
logger.debug("Exception details:", exc_info=True)
|
173 |
return None, f"Error creating RAG pipeline: {e}"
|
174 |
|
175 |
-
# Define positive and negative words for rule-based sentiment analysis
|
176 |
-
POSITIVE_WORDS = {
|
177 |
-
"good", "great", "excellent", "amazing", "wonderful", "fantastic", "positive",
|
178 |
-
"helpful", "satisfied", "happy", "love", "liked", "enjoyed", "beneficial",
|
179 |
-
"superb", "awesome", "nice", "brilliant", "favorable", "pleased"
|
180 |
-
}
|
181 |
-
|
182 |
-
NEGATIVE_WORDS = {
|
183 |
-
"bad", "terrible", "awful", "poor", "disappointed", "unsatisfied", "hate",
|
184 |
-
"hated", "dislike", "dislikes", "worst", "negative", "not helpful", "frustrated",
|
185 |
-
"unhappy", "dissatisfied", "unfortunate", "horrible", "annoyed", "problem", "issues"
|
186 |
-
}
|
187 |
-
|
188 |
-
# Function to handle feedback with rule-based sentiment analysis
|
189 |
-
def handle_feedback(feedback_text):
|
190 |
-
"""
|
191 |
-
Handles user feedback by analyzing its sentiment and providing a dynamic response.
|
192 |
-
Stores the feedback in a temporary file for persistence during the session.
|
193 |
-
|
194 |
-
Parameters:
|
195 |
-
- feedback_text (str): The feedback provided by the user.
|
196 |
-
|
197 |
-
Returns:
|
198 |
-
- str: Acknowledgment message based on feedback sentiment.
|
199 |
-
"""
|
200 |
-
if feedback_text and feedback_text.strip() != "":
|
201 |
-
# Normalize feedback text to lowercase for comparison
|
202 |
-
feedback_lower = feedback_text.lower()
|
203 |
-
|
204 |
-
# Count positive and negative words
|
205 |
-
positive_count = sum(word in feedback_lower for word in POSITIVE_WORDS)
|
206 |
-
negative_count = sum(word in feedback_lower for word in NEGATIVE_WORDS)
|
207 |
-
|
208 |
-
# Determine sentiment based on counts
|
209 |
-
if positive_count > negative_count:
|
210 |
-
sentiment = "positive"
|
211 |
-
acknowledgment = "Thank you for your positive feedback! We're glad to hear that you found our service helpful."
|
212 |
-
elif negative_count > positive_count:
|
213 |
-
sentiment = "negative"
|
214 |
-
acknowledgment = "We're sorry to hear that you're not satisfied. Your feedback is valuable to us, and we'll strive to improve."
|
215 |
-
else:
|
216 |
-
sentiment = "neutral"
|
217 |
-
acknowledgment = "Thank you for your feedback. We appreciate your input."
|
218 |
-
|
219 |
-
# Log the feedback with sentiment
|
220 |
-
logger.info(f"User Feedback: {feedback_text} | Sentiment: {sentiment}")
|
221 |
-
|
222 |
-
# Optionally, store feedback in a temporary file
|
223 |
-
try:
|
224 |
-
with open("/tmp/user_feedback.txt", "a") as f:
|
225 |
-
f.write(f"{feedback_text} | Sentiment: {sentiment}\n")
|
226 |
-
logger.debug("Feedback stored successfully in /tmp/user_feedback.txt.")
|
227 |
-
except Exception as e:
|
228 |
-
logger.error(f"Error storing feedback: {e}")
|
229 |
-
|
230 |
-
return acknowledgment
|
231 |
-
else:
|
232 |
-
return "No feedback provided."
|
233 |
-
|
234 |
# Initialize the RAG pipeline once at startup
|
235 |
-
# Define the file paths (ensure 'AIChatbot.csv' is in the root directory of your Space)
|
236 |
file_paths = ['AIChatbot.csv']
|
237 |
-
model = "llama3-8b-8192"
|
238 |
-
temperature = 0.7
|
239 |
-
max_tokens = 500
|
240 |
|
241 |
rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
|
242 |
if rag_chain is None:
|
243 |
logger.error("Failed to initialize RAG pipeline at startup.")
|
244 |
-
# Depending on your preference, you might want to exit or continue. Here, we'll continue.
|
245 |
|
246 |
# Function to answer questions with input validation and post-processing
|
247 |
-
def answer_question(model, temperature, max_tokens, question
|
248 |
# Validate input
|
249 |
if not is_valid_input(question):
|
250 |
logger.info("Received invalid input from user.")
|
251 |
-
return "Please provide a valid question or input containing meaningful text."
|
252 |
|
253 |
-
# Check if the RAG pipeline is initialized
|
254 |
if rag_chain is None:
|
255 |
logger.error("RAG pipeline is not initialized.")
|
256 |
-
return "The system is currently unavailable. Please try again later."
|
257 |
|
258 |
try:
|
259 |
answer = rag_chain.run(question)
|
260 |
logger.info("Question answered successfully.")
|
261 |
# Post-process to ensure the answer ends with complete sentences
|
262 |
complete_answer = ensure_complete_sentences(answer)
|
263 |
-
|
264 |
-
# Handle feedback
|
265 |
-
feedback_response = handle_feedback(feedback)
|
266 |
-
|
267 |
-
return complete_answer, feedback_response
|
268 |
except Exception as e_inner:
|
269 |
logger.error(f"Error during RAG pipeline execution: {e_inner}")
|
270 |
logger.debug("Exception details:", exc_info=True)
|
271 |
-
return f"Error during RAG pipeline execution: {e_inner}"
|
272 |
|
273 |
-
# Gradio Interface
|
274 |
-
def gradio_interface(model, temperature, max_tokens, question
|
275 |
-
|
276 |
-
# For now, we'll ignore changes to model parameters after initialization
|
277 |
-
return answer_question(model, temperature, max_tokens, question, feedback)
|
278 |
|
279 |
# Define Gradio UI
|
280 |
interface = gr.Interface(
|
@@ -291,7 +220,7 @@ interface = gr.Interface(
|
|
291 |
maximum=1,
|
292 |
step=0.01,
|
293 |
value=temperature,
|
294 |
-
info="Controls the randomness of the response. Higher values
|
295 |
),
|
296 |
gr.Slider(
|
297 |
label="Max Tokens",
|
@@ -299,31 +228,22 @@ interface = gr.Interface(
|
|
299 |
maximum=2048,
|
300 |
step=1,
|
301 |
value=max_tokens,
|
302 |
-
info="Determines the maximum number of tokens in the response.
|
303 |
),
|
304 |
gr.Textbox(
|
305 |
label="Question",
|
306 |
placeholder="e.g., What is box breathing and how does it help reduce anxiety?"
|
307 |
-
),
|
308 |
-
gr.Textbox(
|
309 |
-
label="Feedback",
|
310 |
-
placeholder="Provide your feedback here...",
|
311 |
-
lines=2
|
312 |
)
|
313 |
],
|
314 |
-
outputs=
|
315 |
-
"text",
|
316 |
-
"text"
|
317 |
-
],
|
318 |
title="Daily Wellness AI",
|
319 |
description="Ask questions about daily wellness and get detailed solutions.",
|
320 |
examples=[
|
321 |
-
["llama3-8b-8192", 0.7, 500, "What is box breathing and how does it help reduce anxiety?"
|
322 |
-
["llama3-8b-8192", 0.6, 600, "Provide a daily wellness schedule incorporating box breathing techniques."
|
323 |
],
|
324 |
-
allow_flagging="never"
|
325 |
)
|
326 |
|
327 |
-
# Launch Gradio app without share=True (not supported on Hugging Face Spaces)
|
328 |
if __name__ == "__main__":
|
329 |
interface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
16 |
import json
|
17 |
|
18 |
# Enable logging for debugging
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
# Function to clean the API key
|
|
|
100 |
# Initialize the LLM using ChatGroq with GROQ's API
|
101 |
def initialize_llm(model, temperature, max_tokens):
|
102 |
try:
|
103 |
+
# Allocate a portion of tokens for the prompt
|
104 |
prompt_allocation = int(max_tokens * 0.2)
|
105 |
response_max_tokens = max_tokens - prompt_allocation
|
106 |
if response_max_tokens <= 50:
|
|
|
109 |
llm = ChatGroq(
|
110 |
model=model,
|
111 |
temperature=temperature,
|
112 |
+
max_tokens=response_max_tokens,
|
113 |
+
api_key=api_key
|
114 |
)
|
115 |
logger.info("LLM initialized successfully.")
|
116 |
return llm
|
|
|
133 |
# Initialize the embedding model
|
134 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
135 |
|
136 |
+
# Use a temporary directory for Chroma vectorstore
|
137 |
vectorstore = Chroma.from_documents(
|
138 |
documents=splits,
|
139 |
embedding=embedding_model,
|
140 |
+
persist_directory="/tmp/chroma_db"
|
141 |
)
|
142 |
vectorstore.persist() # Save the database to disk
|
143 |
logger.info("Vectorstore initialized and persisted successfully.")
|
|
|
148 |
input_variables=["context", "question"],
|
149 |
template="""
|
150 |
You are an AI assistant with expertise in daily wellness. Your aim is to provide detailed and comprehensive solutions regarding daily wellness topics without unnecessary verbosity.
|
|
|
151 |
Context:
|
152 |
{context}
|
|
|
153 |
Question:
|
154 |
{question}
|
|
|
155 |
Provide a thorough and complete answer, including relevant examples and a suggested schedule. Ensure that the response does not end abruptly.
|
156 |
"""
|
157 |
)
|
|
|
169 |
logger.debug("Exception details:", exc_info=True)
|
170 |
return None, f"Error creating RAG pipeline: {e}"
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
# Initialize the RAG pipeline once at startup
|
|
|
173 |
file_paths = ['AIChatbot.csv']
|
174 |
+
model = "llama3-8b-8192"
|
175 |
+
temperature = 0.7
|
176 |
+
max_tokens = 500
|
177 |
|
178 |
rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
|
179 |
if rag_chain is None:
|
180 |
logger.error("Failed to initialize RAG pipeline at startup.")
|
|
|
181 |
|
182 |
# Function to answer questions with input validation and post-processing
|
183 |
+
def answer_question(model, temperature, max_tokens, question):
|
184 |
# Validate input
|
185 |
if not is_valid_input(question):
|
186 |
logger.info("Received invalid input from user.")
|
187 |
+
return "Please provide a valid question or input containing meaningful text."
|
188 |
|
|
|
189 |
if rag_chain is None:
|
190 |
logger.error("RAG pipeline is not initialized.")
|
191 |
+
return "The system is currently unavailable. Please try again later."
|
192 |
|
193 |
try:
|
194 |
answer = rag_chain.run(question)
|
195 |
logger.info("Question answered successfully.")
|
196 |
# Post-process to ensure the answer ends with complete sentences
|
197 |
complete_answer = ensure_complete_sentences(answer)
|
198 |
+
return complete_answer
|
|
|
|
|
|
|
|
|
199 |
except Exception as e_inner:
|
200 |
logger.error(f"Error during RAG pipeline execution: {e_inner}")
|
201 |
logger.debug("Exception details:", exc_info=True)
|
202 |
+
return f"Error during RAG pipeline execution: {e_inner}"
|
203 |
|
204 |
+
# Gradio Interface (no feedback)
|
205 |
+
def gradio_interface(model, temperature, max_tokens, question):
|
206 |
+
return answer_question(model, temperature, max_tokens, question)
|
|
|
|
|
207 |
|
208 |
# Define Gradio UI
|
209 |
interface = gr.Interface(
|
|
|
220 |
maximum=1,
|
221 |
step=0.01,
|
222 |
value=temperature,
|
223 |
+
info="Controls the randomness of the response. Higher values make output more random."
|
224 |
),
|
225 |
gr.Slider(
|
226 |
label="Max Tokens",
|
|
|
228 |
maximum=2048,
|
229 |
step=1,
|
230 |
value=max_tokens,
|
231 |
+
info="Determines the maximum number of tokens in the response."
|
232 |
),
|
233 |
gr.Textbox(
|
234 |
label="Question",
|
235 |
placeholder="e.g., What is box breathing and how does it help reduce anxiety?"
|
|
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
],
|
238 |
+
outputs="text",
|
|
|
|
|
|
|
239 |
title="Daily Wellness AI",
|
240 |
description="Ask questions about daily wellness and get detailed solutions.",
|
241 |
examples=[
|
242 |
+
["llama3-8b-8192", 0.7, 500, "What is box breathing and how does it help reduce anxiety?"],
|
243 |
+
["llama3-8b-8192", 0.6, 600, "Provide a daily wellness schedule incorporating box breathing techniques."]
|
244 |
],
|
245 |
+
allow_flagging="never"
|
246 |
)
|
247 |
|
|
|
248 |
if __name__ == "__main__":
|
249 |
interface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
nltk_data/.DS_Store
CHANGED
Binary files a/nltk_data/.DS_Store and b/nltk_data/.DS_Store differ
|
|