File size: 8,440 Bytes
b0c64f6 a79a41b b0c64f6 5067009 7997061 b0c64f6 99474e2 41770fd b0c64f6 99474e2 b0c64f6 2065cb4 15969e9 b0c64f6 15969e9 b0c64f6 15969e9 b0c64f6 15969e9 b0c64f6 41770fd b0c64f6 15969e9 7997061 b0c64f6 15969e9 a79a41b 7997061 a79a41b 41770fd b0c64f6 bd00d5a a79a41b b0c64f6 f83c037 41770fd f83c037 b0c64f6 41770fd bd00d5a a79a41b b0c64f6 f83c037 41770fd f83c037 b0c64f6 bd00d5a a79a41b b0c64f6 bd00d5a a79a41b bd00d5a 15969e9 7997061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import getpass
import pandas as pd
from typing import Optional, Dict, Any
# Conditional import for Runnable from available locations
try:
from langchain_core.runnables.base import Runnable
except ImportError:
try:
from langchain.runnables.base import Runnable
except ImportError:
raise ImportError("Cannot find Runnable class. Please upgrade LangChain or check your installation.")
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
import litellm
from classification_chain import get_classification_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from cleaner_chain import get_cleaner_chain
from contextualize_chain import get_contextualize_chain # New Import for ContextualizeChain
from langchain.llms.base import LLM
###############################################################################
# 1) Environment keys
###############################################################################
if not os.environ.get("GEMINI_API_KEY"):
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
if not os.environ.get("GROQ_API_KEY"):
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
###############################################################################
# 2) Build or load VectorStore
###############################################################################
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading from disk.")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
###############################################################################
# 3) Build RAG chain
###############################################################################
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
class GeminiLangChainLLM(LLM):
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
messages = [{"role": "user", "content": prompt}]
return llm_model(messages, stop_sequences=stop)
@property
def _llm_type(self) -> str:
return "custom_gemini"
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
gemini_as_llm = GeminiLangChainLLM()
rag_chain = RetrievalQA.from_chain_type(
llm=gemini_as_llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return rag_chain
###############################################################################
# 4) Initialize sub-chains
###############################################################################
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()
contextualize_chain = get_contextualize_chain() # New Chain for Contextualizing User Queries
###############################################################################
# 5) Build vectorstores & RAG
###############################################################################
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])
def do_web_search(query: str) -> str:
print("DEBUG: Attempting web search for more info...")
search_query = f"Give me relevant info: {query}"
response = manager_agent.run(search_query)
return response
###############################################################################
# 6) Orchestrator function: returns a dict => {"answer": "..."}
###############################################################################
def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]:
user_query = inputs["input"]
chat_history = inputs.get("chat_history", [])
contextualized_query = contextualize_chain.invoke({"user_query": user_query, "chat_history": chat_history})
# 2) Classification (using the contextualized query)
class_result = classification_chain.invoke({"query": contextualized_query, "chat_history": chat_history})
classification = class_result.get("text", "").strip()
if classification == "OutOfScope":
refusal_text = refusal_chain.run({"chat_history": chat_history})
final_refusal = tailor_chain.run({"response": refusal_text, "chat_history": chat_history})
return {"answer": final_refusal.strip()}
if classification == "Wellness":
rag_result = wellness_rag_chain.invoke({
"query": contextualized_query,
"chat_history": chat_history # Pass history here
})
csv_answer = rag_result["result"].strip()
web_answer = do_web_search(contextualized_query) if not csv_answer else ""
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer, chat_history=chat_history)
final_answer = tailor_chain.run({"response": final_merged, "chat_history": chat_history}).strip()
return {"answer": final_answer}
if classification == "Brand":
rag_result = brand_rag_chain.invoke({
"query": contextualized_query,
"chat_history": chat_history # Pass history here
})
csv_answer = rag_result["result"].strip()
final_merged = cleaner_chain.merge(kb=csv_answer, web="", chat_history=chat_history)
final_answer = tailor_chain.run({"response": final_merged, "chat_history": chat_history}).strip()
return {"answer": final_answer}
refusal_text = refusal_chain.run({"chat_history": chat_history})
final_refusal = tailor_chain.run({"response": refusal_text, "chat_history": chat_history}).strip()
return {"answer": final_refusal}
###############################################################################
# 7) Build a "Runnable" wrapper so .with_listeners() works
###############################################################################
class PipelineRunnable(Runnable[Dict[str, Any], Dict[str, str]]):
def invoke(self, input: Dict[str, Any], config: Optional[Any] = None) -> Dict[str, str]:
return run_with_chain_context(input)
pipeline_runnable = PipelineRunnable()
|