File size: 8,414 Bytes
b0c64f6
7997061
b0c64f6
 
 
a79a41b
b0c64f6
7997061
 
 
 
 
b0c64f6
 
 
 
 
 
 
 
7997061
b0c64f6
 
 
99474e2
b0c64f6
99474e2
b0c64f6
 
7997061
b0c64f6
 
 
 
 
 
 
7997061
b0c64f6
 
 
7997061
b0c64f6
 
 
 
 
 
 
 
99474e2
b0c64f6
 
 
 
99474e2
b0c64f6
 
99474e2
b0c64f6
 
 
 
 
 
99474e2
b0c64f6
 
 
 
 
 
7997061
b0c64f6
 
 
 
 
 
99474e2
b0c64f6
 
 
99474e2
b0c64f6
 
 
 
 
 
 
 
 
 
 
7997061
b0c64f6
 
 
 
 
 
 
7997061
b0c64f6
7997061
 
b0c64f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7997061
b0c64f6
a79a41b
99474e2
7997061
 
 
99474e2
7997061
a79a41b
 
 
 
b0c64f6
 
 
 
 
a79a41b
b0c64f6
 
a79a41b
b0c64f6
 
a79a41b
b0c64f6
 
 
a79a41b
b0c64f6
 
7997061
b0c64f6
a79a41b
 
b0c64f6
 
a79a41b
b0c64f6
 
a79a41b
 
b0c64f6
7997061
b0c64f6
a79a41b
 
7997061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# pipeline.py

import os
import getpass
import pandas as pd
from typing import Optional, Dict, Any

# (Optional) from langchain.schema import RunnableConfig
# If you have the latest "langchain_core", use from langchain_core.runnables.base import Runnable
# or from langchain.runnables.base import Runnable (depending on your version)
from langchain.runnables.base import Runnable

from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA

from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
import litellm

# Classification/Refusal/Tailor/Cleaner
from classification_chain import get_classification_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from cleaner_chain import get_cleaner_chain

from langchain.llms.base import LLM

###############################################################################
# 1) Environment keys
###############################################################################
if not os.environ.get("GEMINI_API_KEY"):
    os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
if not os.environ.get("GROQ_API_KEY"):
    os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")

###############################################################################
# 2) Build or load VectorStore
###############################################################################
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
    if os.path.exists(store_dir):
        print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading from disk.")
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.load_local(store_dir, embeddings)
        return vectorstore
    else:
        print(f"DEBUG: Building new store from CSV: {csv_path}")
        df = pd.read_csv(csv_path)
        df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
        df.columns = df.columns.str.strip()

        if "Answer" in df.columns:
            df.rename(columns={"Answer": "Answers"}, inplace=True)
        if "Question" not in df.columns and "Question " in df.columns:
            df.rename(columns={"Question ": "Question"}, inplace=True)

        if "Question" not in df.columns or "Answers" not in df.columns:
            raise ValueError("CSV must have 'Question' and 'Answers' columns.")

        docs = []
        for _, row in df.iterrows():
            q = str(row["Question"])
            ans = str(row["Answers"])
            doc = Document(page_content=ans, metadata={"question": q})
            docs.append(doc)

        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
        vectorstore = FAISS.from_documents(docs, embedding=embeddings)
        vectorstore.save_local(store_dir)
        return vectorstore

###############################################################################
# 3) Build RAG chain
###############################################################################
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
    class GeminiLangChainLLM(LLM):
        def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
            messages = [{"role": "user", "content": prompt}]
            return llm_model(messages, stop_sequences=stop)

        @property
        def _llm_type(self) -> str:
            return "custom_gemini"

    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
    gemini_as_llm = GeminiLangChainLLM()
    rag_chain = RetrievalQA.from_chain_type(
        llm=gemini_as_llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True
    )
    return rag_chain

###############################################################################
# 4) Initialize sub-chains
###############################################################################
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()

###############################################################################
# 5) Build vectorstores & RAG
###############################################################################
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))

wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"

wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)

wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)

search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=gemini_llm, managed_agents=[managed_web_agent])

def do_web_search(query: str) -> str:
    print("DEBUG: Attempting web search for more info...")
    search_query = f"Give me relevant info: {query}"
    response = manager_agent.run(search_query)
    return response

###############################################################################
# 6) Orchestrator function: returns a dict => {"answer": "..."}
###############################################################################
def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]:
    """
    Called by the Runnable. 
    inputs: { "input": <user_query>, "chat_history": <list of messages> (optional) }
    Output: { "answer": <final string> }
    """
    user_query = inputs["input"]
    chat_history = inputs.get("chat_history", [])

    # 1) Classification
    class_result = classification_chain.invoke({"query": user_query})
    classification = class_result.get("text", "").strip()

    if classification == "OutOfScope":
        refusal_text = refusal_chain.run({})
        final_refusal = tailor_chain.run({"response": refusal_text})
        return {"answer": final_refusal.strip()}

    if classification == "Wellness":
        rag_result = wellness_rag_chain.invoke({"input": user_query, "chat_history": chat_history})
        csv_answer = rag_result["result"].strip()
        if not csv_answer:
            web_answer = do_web_search(user_query)
        else:
            lower_ans = csv_answer.lower()
            if any(phrase in lower_ans for phrase in ["i do not know", "not sure", "no context", "cannot answer"]):
                web_answer = do_web_search(user_query)
            else:
                web_answer = ""

        final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
        final_answer = tailor_chain.run({"response": final_merged}).strip()
        return {"answer": final_answer}

    if classification == "Brand":
        rag_result = brand_rag_chain.invoke({"input": user_query, "chat_history": chat_history})
        csv_answer = rag_result["result"].strip()
        final_merged = cleaner_chain.merge(kb=csv_answer, web="")
        final_answer = tailor_chain.run({"response": final_merged}).strip()
        return {"answer": final_answer}

    # fallback
    refusal_text = refusal_chain.run({})
    final_refusal = tailor_chain.run({"response": refusal_text}).strip()
    return {"answer": final_refusal}


###############################################################################
# 7) Build a "Runnable" wrapper so .with_listeners() works
###############################################################################
from langchain.runnables.base import Runnable

class PipelineRunnable(Runnable[Dict[str, Any], Dict[str, str]]):
    """
    Wraps run_with_chain_context(...) in a Runnable 
    so that RunnableWithMessageHistory can attach listeners.
    """
    def invoke(self, input: Dict[str, Any], config: Optional[Any] = None) -> Dict[str, str]:
        return run_with_chain_context(input)

# Export an instance of PipelineRunnable for use in my_memory_logic.py
pipeline_runnable = PipelineRunnable()