Pendrokar's picture
revert h2p import reorder
b2f6433
raw
history blame
81.5 kB
import os
import re
import sys
import json
import codecs
import glob
from unidecode import unidecode
# from g2pc import G2pC
from h2p_parser.h2p import H2p
from num2words import num2words
import pykakasi
import epitran
# https://www.lexilogos.com/keyboard/pinyin_conversion.htm
import nltk
nltk.download('punkt', quiet=True)
from nltk.tokenize import word_tokenize
# I really need to find a better way to do this (handling many different possible entry points)
try:
sys.path.append(".")
from resources.app.python.xvapitch.text.ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from resources.app.python.xvapitch.text.en_numbers import normalize_numbers as en_normalize_numbers
from resources.app.python.xvapitch.text.ro_numbers import generateWords as ro_generateWords
except ModuleNotFoundError:
try:
from python.xvapitch.text.ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from python.xvapitch.text.en_numbers import normalize_numbers as en_normalize_numbers
from python.xvapitch.text.ro_numbers import generateWords as ro_generateWords
except ModuleNotFoundError:
try:
from text.ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from text.en_numbers import normalize_numbers as en_normalize_numbers
from text.ro_numbers import generateWords as ro_generateWords
except ModuleNotFoundError:
from ipa_to_xvaarpabet import ESpeak, ipa2xvaarpabet, PUNCTUATION, ALL_SYMBOLS, PIN_YIN_ENDS, pinyin_to_arpabet_mappings, text_pinyin_to_pinyin_symbs, manual_phone_replacements
from en_numbers import normalize_numbers as en_normalize_numbers
from ro_numbers import generateWords as ro_generateWords
# Processing order:
# - text-to-text, clean up numbers
# - text-to-text, clean up abbreviations
# - text->phone, Custom dict replacements
# - text->phone, Heteronyms detection and replacement
# - text->phone, built-in dicts replacements (eg CMUdict)
# - text->text/phone, missed words ngram/POS splitting, and re-trying built-in dicts (eg CMUdict)
# - text->phone, g2p (eg espeak)
# - phone->[integer], convert phonemes to their index numbers, for use by the models
# class EspeakWrapper(object):
# def __init__(self, base_dir, lang):
# super(EspeakWrapper, self).__init__()
# from phonemizer.backend import EspeakBackend
# from phonemizer.backend.espeak.base import BaseEspeakBackend
# # from phonemizer.backend.espeak import EspeakBackend
# from phonemizer.separator import Separator
# base_dir = f'C:/Program Files/'
# espeak_dll_path = f'{base_dir}/eSpeak_NG/libespeak-ng.dll'
# # espeak_dll_path = f'{base_dir}/libespeak-ng.dll'
# # espeak_dll_path = f'{base_dir}/'
# print(f'espeak_dll_path, {espeak_dll_path}')
# BaseEspeakBackend.set_library(espeak_dll_path)
# # EspeakBackend.set_library(espeak_dll_path)
# self.backend = EspeakBackend(lang)
# print(f'self.backend, {self.backend}')
# self.separator = Separator(phone="|", syllable="", word="")
# print(f'self.separator, {self.separator}')
# def phonemize (self, word):
# return self.backend.phonemize(word, self.separator)
class TextPreprocessor():
def __init__(self, lang_code, lang_code2, base_dir, add_blank=True, logger=None, use_g2p=True, use_epitran=False):
super(TextPreprocessor, self).__init__()
self.use_g2p = use_g2p
self.use_epitran = use_epitran
self.logger = logger
self.ALL_SYMBOLS = ALL_SYMBOLS
self.lang_code = lang_code
self.lang_code2 = lang_code2
self.g2p_cache = {}
self.g2p_cache_path = None
self.add_blank = add_blank
self.dicts = []
self.dict_words = [] # Cache
self.dict_is_custom = [] # Built-in, or custom; Give custom dict entries priority over other pre-processing steps
self._punctuation = '!\'(),.:;? ' # Standard english pronunciation symbols
self.punct_to_whitespace_reg = re.compile(f'[\.,!?]*')
self.espeak = None
self.epitran = None
# self.custom_g2p_fn = None
if lang_code2:
# if self.use_epitran and self.use_g2p:
if self.use_epitran:
self.epitran = epitran.Epitran(self.lang_code2)
elif self.use_g2p:
base_dir = os.path.dirname(os.path.realpath(__file__))
self.espeak = ESpeak(base_dir, language=self.lang_code2, keep_puncs=True)
self.h2p = None
if lang_code=="en":
self.h2p = H2p(preload=True)
# Regular expression matching text enclosed in curly braces:
self._curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
self.num2words_fn = None
num2words_supported_langs = ["en","ar","cz","de","dk","en_GB","en_IN","es","es_CO","es_VE","eu","fi","fr","fr_CH","fr_BE","fr_DZ","he","id","it","ja","kn","ko","lt","lv","no","pl","pt","pt_BR","sl","sr","ro","ru","sl","tr","th","vi","nl","uk"]
if lang_code in num2words_supported_langs:
self.num2words_fn = num2words
def init_post(self):
self.re_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in self.abbreviations]
# Override - language specific
def clean_numbers(self, text):
return text
# Override - language specific
def clean_am_pm(self, text):
return text
def clean_abbreviations(self, text):
for regex, replacement in self.re_abbreviations:
text = re.sub(regex, replacement, text)
return text
def collapse_whitespace(self, text):
_whitespace_re = re.compile(r'\s+')
return re.sub(_whitespace_re, ' ', text)
def load_dict (self, dict_path, isCustom=False):
pron_dict = {}
if dict_path.endswith(".txt"):
pron_dict = self.read_txt_dict(dict_path, pron_dict)
elif dict_path.endswith(".json"):
pron_dict = self.read_json_dict(dict_path, pron_dict)
pron_dict = self.post_process_dict(pron_dict)
self.dict_is_custom.append(isCustom)
self.dicts.append(pron_dict)
self.dict_words.append(list(pron_dict.keys()))
# Override
def post_process_dict(self, pron_dict):
return pron_dict
def read_txt_dict (self, dict_path, pron_dict):
with codecs.open(dict_path, encoding="utf-8") as f:
lines = f.read().split("\n")
for line in lines:
if len(line.strip()):
# if len(line.strip()) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
word = line.split(" ")[0].lower()
pron = " ".join(line.split(" ")[1:]).strip().upper()
# TODO? Check if the phonemes are valid?
# TODO? Handle variants(1)
pron_dict[word] = pron
return pron_dict
def read_json_dict (self, dict_path, pron_dict):
with codecs.open(dict_path, encoding="utf-8") as f:
json_data = json.load(f)
for word in list(json_data["data"].keys()):
if json_data["data"][word]["enabled"]==True:
# TODO? Check if the phonemes are valid?
# TODO? Handle variants(1)
pron_dict[word.lower()] = json_data["data"][word]["arpabet"].upper()
return pron_dict
def dict_replace (self, text, customDicts):
for di, pron_dict in enumerate(self.dicts):
if (customDicts and self.dict_is_custom[di]) or (not customDicts and not self.dict_is_custom[di]):
dict_words = self.dict_words[di]
text_graphites = re.sub("{([^}]*)}", "", text, flags=re.IGNORECASE)
# Don't run the ARPAbet replacement for every single word, as it would be too slow. Instead, do it only for words that are actually present in the prompt
words_in_prompt = (text_graphites+" ").replace("}","").replace("{","").replace(",","").replace("?","").replace("!","").replace(";","").replace(":","").replace("...",".").replace(". "," ").lower().split(" ")
words_in_prompt = [word.strip() for word in words_in_prompt if len(word.strip()) and word.lower() in dict_words]
if len(words_in_prompt):
# Pad out punctuation, to make sure they don't get used in the word look-ups
text = " "+text.replace(",", " ,").replace(".", " .").replace("!", " !").replace("?", " ?")+" "
for di, dict_word in enumerate(words_in_prompt):
dict_word_with_spaces = "{"+pron_dict[dict_word]+"}"
dict_word_replace = dict_word.strip().replace(".", "\.").replace("(", "\(").replace(")", "\)")
# Do it twice, because re will not re-use spaces, so if you have two neighbouring words to be replaced,
# and they share a space character, one of them won't get changed
for _ in range(2):
text = re.sub(r'(?<!\{)\b'+dict_word_replace+r'\b(?![\w\s\(\)]*[\}])', dict_word_with_spaces, text, flags=re.IGNORECASE)
# Undo the punctuation padding, to retain the original sentence structure
text = text.replace(" ,", ",").replace(" .", ".").replace(" !", "!").replace(" ?", "?")
text = re.sub("^\s+", " ", text) if text.startswith(" ") else re.sub("^\s*", "", text)
text = re.sub("\s+$", " ", text) if text.endswith(" ") else re.sub("\s*$", "", text)
return text
def detect_and_fill_heteronyms (self, text):
if self.h2p is not None:
text = self.h2p.replace_het(text)
return text
def clean_POS_and_subword_misses (self, text):
# Eg plurals, possessives, contractions, hyphenated, compounds, stem, etc
# TODO
return text
def load_g2p_cache (self, cache_path):
# print(f'[DEBUG] Loading cache: {cache_path}')
self.g2p_cache_path = cache_path
if os.path.exists(cache_path):
with open(cache_path, encoding="utf8") as f:
lines = f.read().split("\n")
for line in lines:
if "|" in line:
word = line.split("|")[0]
phones = "|".join(line.split("|")[1:])
self.g2p_cache[word.lower().strip()] = phones.strip()
else:
print(f'g2p cache file not found at: {cache_path}')
def save_g2p_cache (self):
if self.g2p_cache_path:
cache_out = []
cache_keys = sorted(list(self.g2p_cache.keys()))
for key in cache_keys:
cache_out.append(f'{key}|{self.g2p_cache[key]}')
with open(self.g2p_cache_path, "w+", encoding="utf8") as f:
f.write("\n".join(cache_out))
# Override
def fill_missing_via_g2p (self, text):
# TODO, switch to from nltk.tokenize import word_tokenize
orig_text = text
# print(f'[g2p] orig_text, |{orig_text}|')
text_parts = text.split("{")
text_parts2 = [(part.split("}")[1] if "}" in part else part) for part in text_parts]
# print(f'[g2p] text_parts, {text_parts}')
# print(f'[g2p] text_parts2, {text_parts2}')
phonemised = []
for part in text_parts2:
words = part.split(" ")
part_phonemes = []
for word in words:
word = word.strip()
if len(word):
# print(f'\n[g2p] word, {word}')
sub_parts = []
sub_part_phonemes = []
# ====== punctuation stuff start ========
# Get which punctuation symbols are contained in the text fragment
puncs_contained = []
for punc in PUNCTUATION:
if punc in word:
puncs_contained.append(punc)
# Split away the punctuation from text
sub_parts = [word]
# print(f'puncs_contained, {puncs_contained}')
if len(puncs_contained):
for punc in puncs_contained:
# init a new sub part list (list 2)
sub_parts2 = []
# for each sub part...
for sp in sub_parts:
sp = sp.strip()
# ...if it not already a punctuation symbol, try splitting it by the current punctuation symbol
if sp not in PUNCTUATION:
sp_split = sp.split(punc)
# if the split list length is 1, add to list 2
if len(sp_split)==1:
sub_parts2.append(sp_split[0])
else:
# if it's more than 1
# print(f'sp_split, {sp_split}')
for spspi, sps_part in enumerate(sp_split):
# iterate through each item, and add to list, but also add the punct, apart from the last item
sub_parts2.append(sps_part)
if spspi<(len(sp_split)-1):
sub_parts2.append(punc)
else:
# otherwise add the punct to list 2
sub_parts2.append(sp)
# set the sub parts list to list 2, for the next loop, or ready
sub_parts = sub_parts2
else:
sub_parts = [word]
# ====== punctuation stuff end ========
# print(f'sub_parts, {sub_parts}')
for sp in sub_parts:
if sp in PUNCTUATION:
sub_part_phonemes.append(sp)
else:
sp = sp.replace("\"", "").replace(")", "").replace("(", "").replace("]", "").replace("[", "").strip()
if len(sp):
# print(f'sp, {sp}')
if sp.lower() in self.g2p_cache.keys() and len(self.g2p_cache[sp.lower()].strip()):
# print("in cache")
g2p_out = ipa2xvaarpabet(self.g2p_cache[sp.lower()])
# print(f'g2p_out, {g2p_out}')
sub_part_phonemes.append(g2p_out)
else:
if self.use_g2p or "custom_g2p_fn" in dir(self) or self.use_epitran:
# print(f'self.custom_g2p_fn, {self.custom_g2p_fn}')
if "custom_g2p_fn" in dir(self):
g2p_out = self.custom_g2p_fn(sp)
elif self.use_epitran:
g2p_out = self.epitran.transliterate(sp)
else:
g2p_out = self.espeak.phonemize(sp).replace("|", " ")
# print(f'g2p_out, {g2p_out}')
self.g2p_cache[sp.lower()] = g2p_out
self.save_g2p_cache()
g2p_out = ipa2xvaarpabet(g2p_out)
# print(f'g2p_out, {g2p_out}')
sub_part_phonemes.append(g2p_out)
# print(f'sp, {sp} ({len(self.g2p_cache.keys())}) {g2p_out}')
part_phonemes.append(" ".join(sub_part_phonemes))
phonemised.append(" _ ".join(part_phonemes))
# print("--")
# print(f'text_parts ({len(text_parts)}), {text_parts}')
# print(f'[g2p] phonemised ({len(phonemised)}), {phonemised}')
text = []
for ppi, phon_part in enumerate(phonemised):
# print(f'phon_part, {phon_part}')
prefix = ""
if "}" in text_parts[ppi]:
if ppi<len(phonemised)-1 and text_parts[ppi].split("}")[1].startswith(" "):
prefix = text_parts[ppi].split("}")[0]+" _ "
else:
prefix = text_parts[ppi].split("}")[0]+" "
text.append(f'{prefix} {phon_part}')
# print(f'[g2p] text ({len(text)}), {text}')
text_final = []
for tpi, text_part in enumerate(text):
if tpi!=0 or text_part.strip()!="" or not orig_text.startswith("{"):
# print(not orig_text.startswith("{"), tpi, f'|{text_part.strip()}|')
text_final.append(text_part)
if (tpi or orig_text.startswith(" ")) and ((tpi<len(text_parts2)-1 and text_parts2[tpi+1].startswith(" ")) or text_parts2[tpi].endswith(" ")):
# print("adding _")
text_final.append("_")
text = " ".join(text_final).replace(" ", " ").replace(" ", " ").replace(" _ _ ", " _ ").replace(" _ _ ", " _ ")
return text
# Convert IPA fragments not already replaced by dicts/rules via espeak and post-processing
def ipa_to_xVAARPAbet (self, ipa_text):
xVAARPAbet = ipa2xvaarpabet(ipa_text)
return xVAARPAbet
def clean_special_chars(self, text):
return text.replace("*","")
def text_to_phonemes (self, text):
text = self.clean_special_chars(text)
text = self.collapse_whitespace(text).replace(" }", "}").replace("{ ", "{")
text = self.clean_am_pm(text)
text = self.clean_numbers(text)
# print(f'clean_numbers: |{text}|')
text = self.clean_abbreviations(text)
# print(f'clean_abbreviations: |{text}|')
text = self.dict_replace(text, customDicts=True)
# print(f'dict_replace(custom): |{text}|')
text = self.detect_and_fill_heteronyms(text)
# print(f'detect_and_fill_heteronyms: |{text}|')
text = self.dict_replace(text, customDicts=False)
# print(f'dict_replace(built-in):, |{text}|')
text = self.clean_POS_and_subword_misses(text)
# print(f'clean_POS_and_subword_misses: |{text}|')
text = self.fill_missing_via_g2p(text)
# print(f'fill_missing_via_g2p: |{text}|')
return text
# Main entry-point for pre-processing text completely into phonemes
# This converts not the phonemes, but to the index numbers for the phonemes list, as required by the models
def text_to_sequence (self, text):
orig_text = text
text = self.text_to_phonemes(text) # Get 100% phonemes from the text
text = self.collapse_whitespace(text).strip() # Get rid of duplicate/padding spaces
phonemes = text.split(" ")
phonemes_final = []
for pi,phone in enumerate(phonemes):
if phone in manual_phone_replacements.keys():
phonemes_final.append(manual_phone_replacements[phone])
else:
phonemes_final.append(phone)
# print(f'phonemes, {phonemes}')
# with open(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/debug.txt', "w+") as f:
# f.write(" ".join(phonemes))
# sequence = [ALL_SYMBOLS.index(phone) for phone in phonemes]
# blacklist = ["#"]
try:
sequence = []
for phone in phonemes_final:
if phone=="#": # The g2p something returns things like "# foreign french". Cut away the commented out stuff, when this happens
break
if len(phone.strip()):
sequence.append(ALL_SYMBOLS.index(phone))
# sequence = [ALL_SYMBOLS.index(phone) for phone in phonemes_final if len(phone) and phone.strip() not in blacklist]
except:
print(orig_text, phonemes_final)
raise
# Intersperse blank symbol if required
if self.add_blank:
sequence_ = []
for si,symb in enumerate(sequence):
sequence_.append(symb)
if si<len(sequence)-1:
# sequence_.append(len(ALL_SYMBOLS)-1)
sequence_.append(len(ALL_SYMBOLS)-2)
sequence = sequence_
cleaned_text = "|".join([ALL_SYMBOLS[index] for index in sequence])
return sequence, cleaned_text
def cleaned_text_to_sequence (self, text):
text = self.collapse_whitespace(text).strip() # Get rid of duplicate/padding spaces
phonemes = text.split(" ")
sequence = [ALL_SYMBOLS.index(phone) for phone in phonemes]
return sequence
def sequence_to_text (self, sequence): # Used in debugging
text = []
for ind in sequence[0]:
text.append(ALL_SYMBOLS[ind])
return text
class EnglishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(EnglishTextPreprocessor, self).__init__("en", "en-us", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "English"
self.abbreviations = [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('jr', 'junior'),
('maj', 'major'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]
self.init_post()
# from en_numbers import normalize_numbers
self.normalize_numbers = en_normalize_numbers
def post_process_dict (self, pron_dict):
# CMUdict doesn't contain the symbols on the left. Therefore, these must be mapped to symbols that the models have actually
# been trained with. This is only the case for CMUdict, so for English-trained models
ARPAbet_replacements_dict = {
"YO": "IY0 UW0",
"UH": "UH0",
"AR": "R",
"EY": "EY0",
"A": "AA0",
"AW": "AW0",
"X": "K S",
"CX": "K HH",
"AO": "AO0",
"PF": "P F",
"AY": "AY0",
"OE": "OW0 IY0",
"IY": "IY0",
"EH": "EH0",
"OY": "OY0",
"IH": "IH0",
"H": "HH"
}
for word in pron_dict.keys():
phonemes = pron_dict[word]
for key in ARPAbet_replacements_dict.keys():
phonemes = phonemes.replace(f' {key} ', f' {ARPAbet_replacements_dict[key]} ')
# Do it twice, because re will not re-use spaces, so if you have two neighbouring phonemes to be replaced,
# and they share a space character, one of them won't get changed
phonemes = phonemes.replace(f' {key} ', f' {ARPAbet_replacements_dict[key]} ')
pron_dict[word] = phonemes
return pron_dict
def clean_am_pm (self, text):
words_out = []
numerals = ["0","1","2","3","4","5","6","7","8","9"]
spelled_out = ["teen","one", "two", "three", "four", "five", "six", "seven", "eight", "nine","ten","twenty","thirty","forty","fivty","o'clock"]
words = text.split(" ")
for word in words:
if word[:2].lower().strip()=="am":
finishes_with_spelled_out_numeral = False
for spelled_out_n in spelled_out:
if len(words_out) and words_out[-1].endswith(spelled_out_n):
finishes_with_spelled_out_numeral = True
break
if len(words_out) and words_out[-1] != '' and words_out[-1][-1] in numerals or finishes_with_spelled_out_numeral:
word = "{EY0 IH0} {EH0 M}"+word[2:]
words_out.append(word)
return " ".join(words_out)
def clean_numbers (self, text):
# This (inflect code) also does things like currency, magnitudes, etc
final_parts = []
# print(f'text, {text}')
parts = re.split("({([^}]*)})", text)
skip_next = False
for part in parts:
if "{" in part:
final_parts.append(part)
skip_next = True
# print(f'[clean_numbers] keeping: {part}')
else:
if skip_next:
skip_next = False
else:
# print(f'[clean_numbers] doing: {part}')
final_parts.append(self.normalize_numbers(part))
text = "".join(final_parts)
# print(f'[clean_numbers] parts, {parts}')
return text
# return self.normalize_numbers(text)
def text_to_sequence(self, text):
text = unidecode(text) # transliterate non-english letters to English, if they can be ascii
return super(EnglishTextPreprocessor, self).text_to_sequence(text)
class FrenchTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(FrenchTextPreprocessor, self).__init__("fr", "fr-fr", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "French"
self.abbreviations = [
("M", "monsieur"),
("Mlle", "mademoiselle"),
("Mlles", "mesdemoiselles"),
("Mme", "Madame"),
("Mmes", "Mesdames"),
("N.B", "nota bene"),
("M", "monsieur"),
("p.c.q", "parce que"),
("Pr", "professeur"),
("qqch", "quelque chose"),
("rdv", "rendez-vous"),
("no", "numéro"),
("adr", "adresse"),
("dr", "docteur"),
("st", "saint"),
("jr", "junior"),
("sgt", "sergent"),
("capt", "capitain"),
("col", "colonel"),
("av", "avenue"),
("av. J.-C", "avant Jésus-Christ"),
("apr. J.-C", "après Jésus-Christ"),
("boul", "boulevard"),
("c.-à-d", "c’est-à-dire"),
("etc", "et cetera"),
("ex", "exemple"),
("excl", "exclusivement"),
("boul", "boulevard"),
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# https://github.com/virgil-av/numbers-to-words-romanian/blob/master/src/index.ts
class RomanianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(RomanianTextPreprocessor, self).__init__("ro", "ro", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Romanian"
self.abbreviations = [
]
self.normalize_numbers = ro_generateWords
self.init_post()
class ItalianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(ItalianTextPreprocessor, self).__init__("it", "it", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Italian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class DanishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(DanishTextPreprocessor, self).__init__("da", "da", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Danish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class GermanTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(GermanTextPreprocessor, self).__init__("de", "de", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "German"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class AmharicTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(AmharicTextPreprocessor, self).__init__("am", "amh-Ethi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Amharic"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class ArabicTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(ArabicTextPreprocessor, self).__init__("ar", "ar", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Arabic"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class MongolianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(MongolianTextPreprocessor, self).__init__("mn", "mon-Cyrl", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Mongolian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class DutchTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(DutchTextPreprocessor, self).__init__("nl", "nl", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Dutch"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class FinnishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(FinnishTextPreprocessor, self).__init__("fi", "fi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Finnish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class GreekTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(GreekTextPreprocessor, self).__init__("el", "el", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Greek"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class HausaTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(HausaTextPreprocessor, self).__init__("ha", "hau-Latn", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Hausa"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class HindiTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(HindiTextPreprocessor, self).__init__("hi", "hi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Hindi"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class HungarianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(HungarianTextPreprocessor, self).__init__("hu", "hu", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Hungarian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class JapaneseTextPreprocessor(TextPreprocessor):
# Japanese: https://github.com/coqui-ai/TTS/blob/main/TTS/tts/utils/text/japanese/phonemizer.py
# https://pypi.org/project/pykakasi/
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(JapaneseTextPreprocessor, self).__init__("jp", "ja", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Japanese"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
def text_to_phonemes (self, line):
kks = pykakasi.kakasi()
line = kks.convert(line)
line = " ".join([part["hira"] for part in line])
# print(f'line, {line}')
return super(JapaneseTextPreprocessor, self).text_to_phonemes(line)
class KoreanTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(KoreanTextPreprocessor, self).__init__("ko", "ko", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Korean"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class LatinTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(LatinTextPreprocessor, self).__init__("la", "la", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Latin"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class PolishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(PolishTextPreprocessor, self).__init__("pl", "pl", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Polish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class PortugueseTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(PortugueseTextPreprocessor, self).__init__("pt", "pt", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Portuguese"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class RussianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(RussianTextPreprocessor, self).__init__("ru", "ru", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Russian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class SpanishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(SpanishTextPreprocessor, self).__init__("es", "es", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Spanish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class SwahiliTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(SwahiliTextPreprocessor, self).__init__("sw", "sw", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Swahili"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class SwedishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(SwedishTextPreprocessor, self).__init__("sv", "sv", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Swedish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# from thai_segmenter import sentence_segment
class ThaiTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
# super(ThaiTextPreprocessor, self).__init__("th", "th", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
super(ThaiTextPreprocessor, self).__init__("th", "tha-Thai", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
# super(ThaiTextPreprocessor, self).__init__("th", "hau-Latn", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=True)
self.lang_name = "Thai"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
def text_to_phonemes (self, line):
final_line = line
# try:
# line = line.encode('utf8', errors='ignore').decode('utf8', errors='ignore')
# sentence_parts = sentence_segment(line)
# for part in list(sentence_parts):
# for sub_part in part.pos:
# final_line.append(sub_part[0])
# final_line.append(".")
# final_line = " ".join(final_line)
# except:
# pass
return super(ThaiTextPreprocessor, self).text_to_phonemes(final_line)
class TurkishTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(TurkishTextPreprocessor, self).__init__("tr", "tr", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Turkish"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class UkrainianTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(UkrainianTextPreprocessor, self).__init__("uk", "uk", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Ukrainian"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class VietnameseTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(VietnameseTextPreprocessor, self).__init__("vi", "vi", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Vietnamese"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# https://polyglotclub.com/wiki/Language/Wolof/Pronunciation/Alphabet-and-Pronunciation#:~:text=Wolof%20Alphabet,-VowelsEdit&text=Single%20vowels%20are%20short%2C%20geminated,British)%20English%20%22sawed%22.
# https://huggingface.co/abdouaziiz/wav2vec2-xls-r-300m-wolof
class WolofTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(WolofTextPreprocessor, self).__init__("wo", "wo", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=False)
self.lang_name = "Wolof"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
# A very basic, lossy Wolof -> IPA converter. There were no g2p libraries supporting Wolof at the time of writing. It was this or nothing.
def custom_g2p_fn(self, word):
# print(f'custom_g2p_fn | IN: {word}')
word = word.lower()
# lossy
word = word.replace("à", "a")
word = word.replace("ó", "o")
word = word.replace("aa", "aː")
word = re.sub('a(?!:)', 'ɐ', word)
word = word.replace("bb", "bː")
word = word.replace("cc", "cːʰ")
word = word.replace("dd", "dː")
word = word.replace("ee", "ɛː")
word = word.replace("ée", "eː")
word = word.replace("ëe", "əː")
word = re.sub('e(?!:)', 'ɛ', word)
word = re.sub('ë(?!:)', 'ə', word)
word = word.replace("gg", "gː")
word = word.replace("ii", "iː")
word = word.replace("jj", "ɟːʰ")
word = re.sub('j(?!:)', 'ɟ', word)
word = word.replace("kk", "kːʰ")
word = word.replace("ll", "ɫː")
word = word.replace("mb", "m̩b")
word = word.replace("mm", "mː")
word = word.replace("nc", "ɲc")
word = word.replace("nd", "n̩d")
word = word.replace("ng", "ŋ̩g")
word = word.replace("nj", "ɲɟ")
word = word.replace("nk", "ŋ̩k")
word = word.replace("nn", "nː")
word = word.replace("nq", "ɴq")
word = word.replace("nt", "n̩t")
word = word.replace("ññ", "ɲː")
word = word.replace("ŋŋ", "ŋː")
word = re.sub('ñ(?!:)', 'ɲ', word)
word = word.replace("oo", "oː")
word = word.replace("o", "ɔ")
word = word.replace("pp", "pːʰ")
word = word.replace("rr", "rː")
word = word.replace("tt", "tːʰ")
word = word.replace("uu", "uː")
word = word.replace("ww", "wː")
word = word.replace("yy", "jː")
word = word.replace("y", "j")
# lossy
word = word.replace("é", "e")
word = word.replace("ë", "e")
word = word.replace("ñ", "n")
word = word.replace("ŋ", "n")
# print(f'custom_g2p_fn | OUT: {word}')
return word
# def save_g2p_cache(self):
# # TEMPORARY
# pass
class YorubaTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(YorubaTextPreprocessor, self).__init__("yo", "yor-Latn", base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Yoruba"
self.abbreviations = [
]
self.normalize_numbers = self.num2words_fn
self.init_post()
class ChineseTextPreprocessor(TextPreprocessor):
def __init__(self, base_dir, logger=None, use_g2p=True, use_epitran=False):
super(ChineseTextPreprocessor, self).__init__("zh", None, base_dir, logger=logger, use_g2p=use_g2p, use_epitran=use_epitran)
self.lang_name = "Chinese"
self.abbreviations = [
]
self.init_post()
# self.g2p = None
# if self.use_g2p:
# self.g2p = G2pC()
from g2pc import G2pC
self.g2p = G2pC()
self.TEMP_unhandled = []
def split_pinyin (self, pinyin):
symbs_split = []
pinyin = pinyin.lower()
splitting_symbs = ["zh", "ch", "sh", "b", "p", "m", "f", "d", "t", "n", "l", "g", "k", "h", "z", "c", "s", "r", "j", "q", "x"]
for ss in splitting_symbs:
# if phon.startswith(ss) and not phon.endswith("i"):
if pinyin.startswith(ss):
symbs_split.append(ss.upper())
pinyin = pinyin[len(ss):]
break
symbs_split.append(pinyin.upper())
return symbs_split
def post_process_pinyin_symbs (self, symbs):
post_processed = []
# splitting_symbs = ["zh", "ch", "sh", "b", "p", "m", "f", "d", "t", "n", "l", "g", "k", "h", "z", "c", "s", "r", "j", "q", "x"]
for symb in symbs.split(" "):
if len(symb)==0:
continue
symbs = self.split_pinyin(symb)
for symb in symbs:
post_processed.append(symb)
# for ss in splitting_symbs:
# # if phon.startswith(ss) and not phon.endswith("i"):
# if symb.startswith(ss):
# post_processed.append(ss.upper())
# symb = symb[len(ss):]
# break
# post_processed.append(symb.upper())
return " ".join(post_processed)
def fill_missing_via_g2p_zh (self, text):
# TODO, switch to from nltk.tokenize import word_tokenize
orig_text = text
# print(f'[g2p] orig_text, |{orig_text}|')
text_parts = text.split("{")
text_parts2 = [(part.split("}")[1] if "}" in part else part) for part in text_parts]
# print(f'[g2p] text_parts, {text_parts}')
# print(f'[g2p] text_parts2, {text_parts2}')
phonemised = []
for part in text_parts2:
# words = part.split(" ")
words = [part]
part_phonemes = []
for word in words:
word = word.strip()
if len(word):
# print(f'[g2p] word, {word}')
sub_parts = []
sub_part_phonemes = []
# ====== punctuation stuff start ========
# Get which punctuation symbols are contained in the text fragment
puncs_contained = []
for punc in PUNCTUATION:
if punc in word:
puncs_contained.append(punc)
# Split away the punctuation from text
sub_parts = [word]
# print(f'puncs_contained, {puncs_contained}')
if len(puncs_contained):
for punc in puncs_contained:
# init a new sub part list (list 2)
sub_parts2 = []
# for each sub part...
for sp in sub_parts:
sp = sp.strip()
# ...if it not already a punctuation symbol, try splitting it by the current punctuation symbol
if sp not in PUNCTUATION:
sp_split = sp.split(punc)
# if the split list length is 1, add to list 2
if len(sp_split)==1:
sub_parts2.append(sp_split[0])
else:
# if it's more than 1
# print(f'sp_split, {sp_split}')
for spspi, sps_part in enumerate(sp_split):
# iterate through each item, and add to list, but also add the punct, apart from the last item
sub_parts2.append(sps_part)
if spspi<(len(sp_split)-1):
sub_parts2.append(punc)
else:
# otherwise add the punct to list 2
sub_parts2.append(sp)
# set the sub parts list to list 2, for the next loop, or ready
sub_parts = sub_parts2
else:
sub_parts = [word]
# ====== punctuation stuff end ========
# print(f'sub_parts, {sub_parts}')
for sp in sub_parts:
if sp in PUNCTUATION:
sub_part_phonemes.append(sp)
else:
sp = sp.replace("\"", "").replace(")", "").replace("(", "").replace("]", "").replace("[", "").strip()
if len(sp):
if sp.lower() in self.g2p_cache.keys() and len(self.g2p_cache[sp.lower()].strip()):
g2p_out = self.g2p_cache[sp.lower()]
g2p_out = self.post_process_pinyin_symbs(g2p_out)
sub_part_phonemes.append(g2p_out)
else:
# print(f'sp, {sp} ({len(self.g2p_cache.keys())})')
# g2p_out = self.espeak.phonemize(sp).replace("|", " ")
g2p_out = self.g2p(sp)
g2p_out = " ".join([out_part[2] for out_part in g2p_out])
self.g2p_cache[sp.lower()] = g2p_out
self.save_g2p_cache()
# g2p_out = ipa2xvaarpabet(g2p_out)
g2p_out = self.post_process_pinyin_symbs(g2p_out)
# print(f'g2p_out, {g2p_out}')
sub_part_phonemes.append(g2p_out)
part_phonemes.append(" ".join(sub_part_phonemes))
phonemised.append(" _ ".join(part_phonemes))
# print("--")
# print(f'text_parts ({len(text_parts)}), {text_parts}')
# print(f'[g2p] phonemised ({len(phonemised)}), {phonemised}')
text = []
for ppi, phon_part in enumerate(phonemised):
# print(f'phon_part, {phon_part}')
prefix = ""
if "}" in text_parts[ppi]:
if ppi<len(phonemised)-1 and text_parts[ppi].split("}")[1].startswith(" "):
prefix = text_parts[ppi].split("}")[0]+" _ "
else:
prefix = text_parts[ppi].split("}")[0]+" "
text.append(f'{prefix} {phon_part}')
# print(f'[g2p] text ({len(text)}), {text}')
text_final = []
for tpi, text_part in enumerate(text):
if tpi!=0 or text_part.strip()!="" or not orig_text.startswith("{"):
# print(not orig_text.startswith("{"), tpi, f'|{text_part.strip()}|')
text_final.append(text_part)
if (tpi or orig_text.startswith(" ")) and ((tpi<len(text_parts2)-1 and text_parts2[tpi+1].startswith(" ")) or text_parts2[tpi].endswith(" ")):
# print("adding _")
text_final.append("_")
text = " ".join(text_final).replace(" ", " ").replace(" ", " ").replace(" _ _ ", " _ ").replace(" _ _ ", " _ ")
return text
def preprocess_pinyin (self, text):
# self.logger.info(f'preprocess_pinyin word_tokenize: {word_tokenize(text)}')
tokens = word_tokenize(text)
final_out = []
is_inside_inline_arpabet = False # Used for determining whether to handle token as grapheme of inlined phonemes (or already preproccessed phonemes)
# has_included_inlint_arpabet_start = False # Used to determine if to insert the inline phoneme delimiter start {
for token in tokens:
if token.startswith("{"):
is_inside_inline_arpabet = True
# if len(token.replace("{", "")):
# final_out.append(token.replace("{", ""))
final_out.append(token)
if token.endswith("}"):
is_inside_inline_arpabet = False
final_out.append(token)
if is_inside_inline_arpabet: # The token is an already processed phoneme, from inline or previously processed phonemes. Include without changes
final_out.append(token)
continue
text = text_pinyin_to_pinyin_symbs(token)
text_final = []
text = text.upper().split(" ")
# self.logger.info(f'preprocess_pinyin text: {text}')
for part in text:
# self.logger.info(f'preprocess_pinyin part: {part}')
final_parts = []
# split_symbs = []
do_again = True
# print(f'part, {part}')
while do_again:
# Check to see if the part is a pynyin that starts with one of the consonants that can be split away
split_symbs = self.split_pinyin(part)
# print(f'split_symbs, {split_symbs}')
do_again = False
if len(split_symbs)>1:
# A split happened. Add the first split-pinyin into the list...
final_parts.append(split_symbs[0])
# ... then check if the second half of the split starts with one of the "ending" pinyin phonemes
second_half = split_symbs[1]
for phone in PIN_YIN_ENDS:
if second_half.startswith(phone):
final_parts.append(phone)
second_half = second_half[len(phone):]
if len(second_half):
do_again = True
break
# Check to see if the leftover starts with one of the pinyin to arpabet mappings
for phone_key in pinyin_to_arpabet_mappings.keys():
if second_half.startswith(phone_key):
final_parts.append(pinyin_to_arpabet_mappings[phone_key])
second_half = second_half[len(pinyin_to_arpabet_mappings[phone_key]):]
if len(second_half):
do_again = True
break
part = second_half
else:
# If the part wasn't split up, then check if it starts with a "split" pinyin symbol, but not with the splitting consonants
for phone in PIN_YIN_ENDS:
if part.startswith(phone):
# Starts with an "ending" phoneme, so add to the list and remove from the part
final_parts.append(phone)
part = part[len(phone):]
if len(part):
# Repeat the whole thing, if there's still any left-over stuff
do_again = True
break
# Check to see if the leftover starts with one of the pinyin to arpabet mappings
for phone_key in pinyin_to_arpabet_mappings.keys():
if part.startswith(phone_key):
# Starts with a replacement phone, so add to the list and remove from the part
final_parts.append(pinyin_to_arpabet_mappings[phone_key])
part = part[len(pinyin_to_arpabet_mappings[phone_key]):]
if len(part):
# Repeat the whole thing, if there's still any left-over stuff
do_again = True
break
# print(f'part, {part}')
if len(part):
final_parts.append(part)
# print(f'final_parts, {final_parts}')
# self.logger.info(f'preprocess_pinyin final_parts: {final_parts}')
all_split_are_pinyin = True
final_parts_post = []
for split in final_parts:
if split in pinyin_to_arpabet_mappings.keys():
# self.logger.info(f'preprocess_pinyin changing split from: {split} to {pinyin_to_arpabet_mappings[split]}')
split = pinyin_to_arpabet_mappings[split]
# if split=="J":
# split = "JH"
if split in ALL_SYMBOLS:
final_parts_post.append(split)
else:
if split+"5" in ALL_SYMBOLS:
final_parts_post.append(split+"5")
else:
all_split_are_pinyin = False
# self.logger.info(f'preprocess_pinyin final_parts_post: {final_parts_post}')
if all_split_are_pinyin:
# text_final.append("{"+" ".join(final_parts)+"}")
text_final.append("{"+" ".join(final_parts_post)+"}")
else:
text_final.append(part)
# print(f'text_final, {text_final}')
final_out.append(" ".join(text_final))
# self.logger.info(f'preprocess_pinyin final_out: {final_out}')
text = " ".join(final_out)
# self.logger.info(f'preprocess_pinyin return text: {text}')
return text
def text_to_phonemes (self, text):
# print(f'text_to_phonemes, {text}')
text = self.collapse_whitespace(text).replace(" }", "}").replace("{ ", "{")
text = self.preprocess_pinyin(text)
# text = self.clean_numbers(text)
# print(f'clean_numbers: |{text}|')
# text = self.clean_abbreviations(text)
# print(f'clean_abbreviations: |{text}|')
# text = self.dict_replace(text, customDicts=True)
# print(f'dict_replace(custom): |{text}|')
# text = self.detect_and_fill_heteronyms(text)
# print(f'detect_and_fill_heteronyms: |{text}|')
# text = self.dict_replace(text, customDicts=False)
# print(f'dict_replace(built-in):, |{text}|')
# text = self.clean_POS_and_subword_misses(text)
# self.logger.info(f'clean_POS_and_subword_misses: |{text}|')
text = self.fill_missing_via_g2p_zh(text)
# self.logger.info(f'1 text: {text}')
# text = self.en_processor.text_to_phonemes(text)
# self.logger.info(f'2 text: {text}')
# print(f'fill_missing_via_g2p: |{text}|')
return text
def text_to_sequence (self, text):
orig_text = text
text = self.collapse_whitespace(text) # Get rid of duplicate/padding spaces
text = text.replace("!", "!").replace("?", "?").replace(",", ",").replace("。", ",").replace("…", "...").replace(")", "").replace("(", "")\
.replace("、", ",").replace("“", ",").replace("”", ",").replace(":", ":")
text = self.text_to_phonemes(text) # Get 100% phonemes from the text
# if self.logger is not None:
# self.logger.info(f'1 text: {text}')
# text = self.en_processor.text_to_phonemes(text)
# self.logger.info(f'2 text: {text}')
phonemes = self.collapse_whitespace(text).strip().split(" ")
# self.logger.info(f'1 phonemes: {phonemes}')
sequence = []
for pi,phone in enumerate(phonemes):
phone = phone.replace(":","").strip()
if len(phone):
try:
sequence.append(ALL_SYMBOLS.index(phone))
except:
if phone in pinyin_to_arpabet_mappings.keys():
sequence.append(ALL_SYMBOLS.index(pinyin_to_arpabet_mappings[phone]))
else:
if phone not in ["5"]:
self.TEMP_unhandled.append(f'{orig_text}: {phone}')
# with open(f'F:/Speech/xVA-Synth/python/xvapitch/text/DEBUG.txt', "w+") as f:
# f.write("\n".join(self.TEMP_unhandled))
# Add a space character between each symbol
# if pi is not len(phonemes)-1:
# sequence.append(ALL_SYMBOLS.index("_"))
# Intersperse blank symbol if required
if self.add_blank:
sequence_ = []
for si,symb in enumerate(sequence):
sequence_.append(symb)
if si<len(sequence)-1:
sequence_.append(len(ALL_SYMBOLS)-1)
sequence = sequence_
cleaned_text = "|".join([ALL_SYMBOLS[index] for index in sequence])
return sequence, cleaned_text
def get_text_preprocessor(code, base_dir, logger=None, override_useAnyG2P=None):
tp_codes = {
"am": {
"name": "Amharic",
"tp": AmharicTextPreprocessor,
"dicts": [],
"custom_dicts": [],
"use_g2p": False,
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_am.txt']
},
"ar": {
"name": "Arabic",
"tp": ArabicTextPreprocessor,
"dicts": [f'{base_dir}/dicts/arabic.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ar.txt']
},
"da": {
"name": "Danish",
"tp": DanishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/danish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_da.txt']
},
"de": {
"name": "German",
"tp": GermanTextPreprocessor,
"dicts": [f'{base_dir}/dicts/german.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_de.txt']
},
"el": {
"name": "Greek",
"tp": GreekTextPreprocessor,
"dicts": [f'{base_dir}/dicts/greek.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_el.txt']
},
"en": {
"name": "English",
"tp": EnglishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/cmudict.txt'],
"custom_dicts": glob.glob(f'{base_dir}/../../../arpabet/*.json'),
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_en.txt']
},
"es": {
"name": "Spanish",
"tp": SpanishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/spanish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_es.txt']
},
"fi": {
"name": "Finnish",
"tp": FinnishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/finnish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_fi.txt']
},
"fr": {
"name": "French",
"tp": FrenchTextPreprocessor,
"dicts": [f'{base_dir}/dicts/french.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_fr.txt']
},
"ha": {
"name": "Hausa",
"tp": HausaTextPreprocessor,
# "dicts": [f'{base_dir}/dicts/hausa.txt'],
"dicts": [],
"custom_dicts": [],
"use_g2p": False,
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_ha.txt']
},
"hi": {
"name": "Hindi",
"tp": HindiTextPreprocessor,
"dicts": [f'{base_dir}/dicts/hindi.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_hi.txt']
},
"hu": {
"name": "Hungarian",
"tp": HungarianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/hungarian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_hu.txt']
},
"it": {
"name": "Italian",
"tp": ItalianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/italian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_it.txt']
},
"jp": {
"name": "Japanese",
"tp": JapaneseTextPreprocessor,
"dicts": [f'{base_dir}/dicts/japanese.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_jp.txt']
},
"ko": {
"name": "Korean",
"tp": KoreanTextPreprocessor,
"dicts": [f'{base_dir}/dicts/korean.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ko.txt']
},
"la": {
"name": "Latin",
"tp": LatinTextPreprocessor,
"dicts": [f'{base_dir}/dicts/latin.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_la.txt']
},
"mn": {
"name": "Mongolian",
"tp": MongolianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/mongolian.txt'],
"custom_dicts": [],
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_mn.txt']
},
"nl": {
"name": "Dutch",
"tp": DutchTextPreprocessor,
"dicts": [f'{base_dir}/dicts/dutch.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_nl.txt']
},
"pl": {
"name": "Polish",
"tp": PolishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/polish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_pl.txt']
},
"pt": {
"name": "Portuguese",
"tp": PortugueseTextPreprocessor,
"dicts": [f'{base_dir}/dicts/portuguese_br.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_pt.txt']
},
"ro": {
"name": "Romanian",
"tp": RomanianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/romanian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ro.txt']
},
"ru": {
"name": "Russian",
"tp": RussianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/russian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_ru.txt']
},
"sv": {
"name": "Swedish",
"tp": SwedishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/swedish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_sv.txt']
},
"sw": {
"name": "Swahili",
"tp": SwahiliTextPreprocessor,
"dicts": [f'{base_dir}/dicts/swahili.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_sw.txt']
},
"th": {
"name": "Thai",
"tp": ThaiTextPreprocessor,
"dicts": [f'{base_dir}/dicts/thai.txt'],
"custom_dicts": [],
# "use_g2p": F
# "use_g2p": False,
# "g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_th.txt']
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_th.txt']
},
"tr": {
"name": "Turkish",
"tp": TurkishTextPreprocessor,
"dicts": [f'{base_dir}/dicts/turkish.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_tr.txt']
},
"uk": {
"name": "Ukrainian",
"tp": UkrainianTextPreprocessor,
"dicts": [f'{base_dir}/dicts/ukrainian.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_uk.txt']
},
"vi": {
"name": "Vietnamese",
"tp": VietnameseTextPreprocessor,
"dicts": [f'{base_dir}/dicts/vietnamese.txt'],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/espeak/espeak_cache_vi.txt']
},
"wo": {
"name": "Wolof",
"tp": WolofTextPreprocessor,
# "dicts": [f'{base_dir}/dicts/wolof.txt'],
"dicts": [],
"custom_dicts": [],
"g2p_cache": [f'{base_dir}/g2p_cache/g2p_cache_wo.txt']
},
"yo": {
"name": "Yoruba",
"tp": YorubaTextPreprocessor,
"dicts": [f'{base_dir}/dicts/yoruba.txt'],
"custom_dicts": [],
"use_epitran": True,
"g2p_cache": [f'{base_dir}/g2p_cache/epitran/epitran_cache_yo.txt']
},
"zh": {
"name": "Chinese",
"tp": ChineseTextPreprocessor,
"dicts": [],
"custom_dicts": [],
# "use_g2p": False,
"use_g2p": True,
"g2p_cache": [f'{base_dir}/g2p_cache/g2pc_cache_zh.txt']
},
}
use_g2p = tp_codes[code]["use_g2p"] if "use_g2p" in tp_codes[code].keys() else True
# print(f'override_useAnyG2P, {override_useAnyG2P}')
if override_useAnyG2P is False:
use_g2p = override_useAnyG2P
tp_codes[code]["use_epitran"] = override_useAnyG2P
tp_codes[code]["use_g2p"] = override_useAnyG2P
# print(f'tp_codes[code]["use_epitran"], {tp_codes[code]["use_epitran"]}')
tp = tp_codes[code]["tp"](base_dir, logger=logger, use_g2p=use_g2p, use_epitran=tp_codes[code]["use_epitran"] if "use_epitran" in tp_codes[code].keys() else None)
for builtin_dict in tp_codes[code]["dicts"]:
tp.load_dict(builtin_dict)
for custom_dict in tp_codes[code]["custom_dicts"]:
tp.load_dict(custom_dict, isCustom=True)
if len(tp_codes[code]["g2p_cache"]):
tp.load_g2p_cache(tp_codes[code]["g2p_cache"][0])
return tp
if __name__ == '__main__':
import os
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
# tp = RomanianTextPreprocessor(base_dir)
# tp = ItalianTextPreprocessor(base_dir)
# tp = GermanTextPreprocessor(base_dir)
# tp = FrenchTextPreprocessor(base_dir)
# tp = ArabicTextPreprocessor(base_dir)
tp = get_text_preprocessor("jp", base_dir)
# line = "Un test la 10 cuvinte"
# line = "ein Testsatz mit 10 Wörtern"
# line = "une phrase test de 10 mots"
# line = "جملة اختبارية من 10 كلمات"
# line = "かな漢字"
# line = "10語の日本語文"
# line = "aa a a "
# line = "aa a baal rebb ceeb sàcc "
line = "これしきで戦闘不能か…ひ弱なものだな。"
# line = "これしきで せんとうふのう か…ひ じゃく なものだな。"
line = "これ式で戦闘不能か費はなものだな."
line = "これ しき で せんとうふのう か ひ はなものだな."
# tp.espeak
# print(f'tp.espeak, {tp.espeak}')
# print(f'tp.espeak, {tp.espeak.supported_languages(base_dir)}')
# # {'af': 'afrikaans-mbrola-1', 'am': 'Amharic', 'an': 'Aragonese', 'ar': 'Arabic', 'as': 'Assamese', 'az': 'Azerbaijani', 'ba': 'Bashkir', 'be': 'Belarusian', 'bg': 'Bulgarian', 'bn': 'Bengali', 'bpy': 'Bishnupriya_Manipuri', 'bs': 'Bosnian', 'ca': 'Catalan', 'chr-US-Qaaa-x-west': 'Cherokee_', 'cmn': 'Chinese_(Mandarin,_latin_as_English)', 'cmn-latn-pinyin': 'Chinese_(Mandarin,_latin_as_Pinyin)', 'cs': 'Czech', 'cv': 'Chuvash', 'cy': 'Welsh', 'da': 'Danish', 'de': 'german-mbrola-8', 'el': 'greek-mbrola-1', 'en': 'en-swedish', 'en-029': 'English_(Caribbean)', 'en-gb': 'English_(Great_Britain)', 'en-gb-scotland': 'English_(Scotland)', 'en-gb-x-gbclan': 'English_(Lancaster)', 'en-gb-x-gbcwmd': 'English_(West_Midlands)', 'en-gb-x-rp': 'English_(Received_Pronunciation)', 'en-uk': 'english-mb-en1', 'en-us': 'us-mbrola-3', 'en-us-nyc': 'English_(America,_New_York_City)', 'eo': 'Esperanto', 'es': 'Spanish_(Spain)', 'es-419': 'Spanish_(Latin_America)', 'es-es': 'spanish-mbrola-2', 'es-mx': 'mexican-mbrola-2', 'es-vz': 'venezuala-mbrola-1', 'et': 'estonian-mbrola-1', 'eu': 'Basque', 'fa': 'persian-mb-ir1', 'fa-latn': 'Persian_(Pinglish)', 'fi': 'Finnish', 'fr': 'french-mbrola-7', 'fr-be': 'french-mbrola-5', 'fr-ca': 'fr-canadian-mbrola-2', 'fr-ch': 'French_(Switzerland)', 'fr-fr': 'french-mbrola-6', 'ga': 'Gaelic_(Irish)', 'gd': 'Gaelic_(Scottish)', 'gn': 'Guarani', 'grc': 'german-mbrola-6', 'gu': 'Gujarati', 'hak': 'Hakka_Chinese', 'haw': 'Hawaiian', 'he': 'hebrew-mbrola-2', 'hi': 'Hindi', 'hr': 'croatian-mbrola-1', 'ht': 'Haitian_Creole', 'hu': 'hungarian-mbrola-1', 'hy': 'Armenian_(East_Armenia)', 'hyw': 'Armenian_(West_Armenia)', 'ia': 'Interlingua', 'id': 'indonesian-mbrola-1', 'io': 'Ido', 'is': 'icelandic-mbrola-1', 'it': 'italian-mbrola-2', 'ja': 'Japanese', 'jbo': 'Lojban', 'ka': 'Georgian', 'kk': 'Kazakh', 'kl': 'Greenlandic', 'kn': 'Kannada', 'ko': 'Korean', 'kok': 'Konkani', 'ku': 'Kurdish', 'ky': 'Kyrgyz', 'la': 'latin-mbrola-1', 'lb': 'Luxembourgish', 'lfn': 'Lingua_Franca_Nova', 'lt': 'lithuanian-mbrola-2', 'ltg': 'Latgalian', 'lv': 'Latvian', 'mi': 'maori-mbrola-1', 'mk': 'Macedonian', 'ml': 'Malayalam', 'mr': 'Marathi', 'ms': 'Malay', 'mt': 'Maltese', 'my': 'Myanmar_(Burmese)', 'nb': 'Norwegian_Bokmål', 'nci': 'Nahuatl_(Classical)', 'ne': 'Nepali', 'nl': 'dutch-mbrola-3', 'nog': 'Nogai', 'om': 'Oromo', 'or': 'Oriya', 'pa': 'Punjabi', 'pap': 'Papiamento', 'piqd': 'Klingon', 'pl': 'polish-mbrola-1', 'pt': 'Portuguese_(Portugal)', 'pt-br': 'brazil-mbrola-4', 'pt-pt': 'portugal-mbrola-1', 'py': 'Pyash', 'qdb': 'Lang_Belta', 'qu': 'Quechua', 'quc': "K'iche'", 'qya': 'Quenya', 'ro': 'romanian-mbrola-1', 'ru': 'Russian', 'ru-lv': 'Russian_(Latvia)', 'sd': 'Sindhi', 'shn': 'Shan_(Tai_Yai)', 'si': 'Sinhala', 'sjn': 'Sindarin', 'sk': 'Slovak', 'sl': 'Slovenian', 'smj': 'Lule_Saami', 'sq': 'Albanian', 'sr': 'Serbian', 'sv': 'swedish-mbrola-2', 'sw': 'Swahili', 'ta': 'Tamil', 'te': 'telugu-mbrola-1', 'th': 'Thai', 'tk': 'Turkmen', 'tn': 'Setswana', 'tr': 'turkish-mbrola-1', 'tt': 'Tatar', 'ug': 'Uyghur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vi': 'Vietnamese_(Northern)', 'vi-vn-x-central': 'Vietnamese_(Central)', 'vi-vn-x-south': 'Vietnamese_(Southern)', 'yue': 'Chinese_(Cantonese,_latin_as_Jyutping)', 'zh': 'chinese-mb-cn1'}
# fdfgd()
# kks = pykakasi.kakasi()
# line = kks.convert(line)
# line = " ".join([part["hira"] for part in line])
print(f'line, {line}')
print(f'Line: |{line}|')
phonemes = tp.text_to_phonemes(line)
print(f'xVAARPAbet: |{phonemes}|')
ssd()
if __name__ == '__main__':
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
tp = get_text_preprocessor("en", base_dir)
with open("F:/Speech/custom-arpabets/elderscrolls-missing-post.txt") as f:
words = f.read().split("\n")
metadata_out = ["game_id|voice_id|text,out_path"]
txt_out = []
for word in words:
if len(word.strip())>2:
phones = tp.text_to_phonemes(word)
print(f'word, {word}')
print(f'phones, {phones}')
metadata_out.append(f'skyrim|sk_femaleeventoned|This is what '+"{" + phones +"}"+f' sounds like.|./{word}.wav')
txt_out.append(f'{word}|{phones}')
with open(f'./g2p_batch.csv', "w+") as f:
f.write("\n".join(metadata_out))
with open(f'./txt_out.csv', "w+") as f:
f.write("\n".join(txt_out))
fddfg()
if __name__ == '__main__':
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
# tp = get_text_preprocessor("th", base_dir)
# tp = get_text_preprocessor("mn", base_dir)
tp = get_text_preprocessor("wo", base_dir)
# print(tp.text_to_phonemes("นี่คือประโยคภาษาไทยที่พูดโดย xVASynth ประมาณนี้ค่ะ"))
# print(tp.text_to_phonemes("Энэ бол {EH1 G S V EY0 EY0 IH0 S IH0 N TH}-ийн ярьдаг монгол хэл дээрх өгүүлбэр юм. "))
print(tp.text_to_phonemes(" Kii est ab baat ci wolof, janga par xvasynth "))
fddfg()
if __name__ == '__main__':
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
tp = get_text_preprocessor("ha", base_dir)
print(tp.text_to_phonemes("Wannan jimla ce a cikin hausa, xVASynth ta yi magana "))
fddfg()
# if __name__ == '__main__':
if False:
print("Mass pre-caching g2p")
def get_datasets (root_f):
data_folders = os.listdir(root_f)
data_folders = [f'{root_f}/{dataset_folder}' for dataset_folder in sorted(data_folders) if not dataset_folder.startswith("_") and "." not in dataset_folder]
return data_folders
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
# all_data_folders = get_datasets(f'D:/xVASpeech/DATASETS')+get_datasets(f'D:/xVASpeech/GAME_DATA')
all_data_folders = get_datasets(f'D:/xVASpeech/GAME_DATA')
for dfi,dataset_folder in enumerate(all_data_folders):
lang = dataset_folder.split("/")[-1].split("_")[0]
if "de_f4" in dataset_folder:
continue
# if lang not in ["zh"]:
# continue
# if lang in ["am", "sw"]:
# continue # Skip currently running training
tp = get_text_preprocessor(lang, base_dir)
with open(f'{dataset_folder}/metadata.csv') as f:
lines = f.read().split("\n")
for li,line in enumerate(lines):
print(f'\r{dfi+1}/{len(all_data_folders)} | {li+1}/{len(lines)} | {dataset_folder} ', end="", flush=True)
if "|" in line:
text = line.split("|")[1]
if len(text):
tp.text_to_phonemes(text)
print("")
fsdf()
# kks = pykakasi.kakasi()
# pron_dict = {}
# # with open(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/dicts/japanese.txt') as f:
# with open(f'F:/Speech/xVA-Synth/python/xvapitch/text/dicts/japanese.txt') as f:
# lines = f.read().split("\n")
# for li,line in enumerate(lines):
# print(f'\r{li+1}/{len(lines)}', end="", flush=True)
# if len(line.strip()):
# word = line.split(" ")[0]
# phon = " ".join(line.split(" ")[1:])
# word = kks.convert(word)
# word = "".join([part["hira"] for part in word])
# # word = word.replace(" ", "").replace(" ", "")
# pron_dict[word] = phon
# csv_out = []
# for key in pron_dict.keys():
# csv_out.append(f'{key} {pron_dict[key]}')
# with open(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/dicts/japanese_h.txt', "w+") as f:
# f.write("\n".join(csv_out))
if False:
tp = ChineseTextPreprocessor(base_dir)
# tp.load_g2p_cache(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/g2p_cache/g2pc_cache_zh.txt')
line = "你好。 这就是 xVASynth 声音的样子。"
line = "遛弯儿都得躲远点。"
# line = "Nǐ hǎo"
# line = "Zhè shì yīgè jiào zhǎng de jùzi. Wǒ xīwàng tā shì zhèngquè de, yīnwèi wǒ zhèngzài shǐyòng gǔgē fānyì tā"
# phones = tp.text_to_phonemes(line)
# print(f'phones, |{phones}|')
phones = tp.text_to_sequence(line)
print(f'phones, |{phones[1]}|')
print("start setup...")
text = []
# text.append("nords")
# text.append("I read the book... It was a good book to read?{T EH S T}! Test dovahkiin word")
# text.append(" I read the book... It was a good book to read?{T EH S T}! Test dovahkiin word")
# text.append("{AY1 } read the book... It was a good book to read?{T EH S T}! Test 1 dovahkiin word")
text.append(" {AY1 } read the book... It was a good book to read?{T EH S T}! Test 1 dovahkiin word ")
# text.append("the scaffold hung with black; and the inhabitants of the neighborhood, having petitioned the sheriffs to remove the scene of execution to the old place,")
text.append("oxenfurt")
text.append("atomatoys")
import os
base_dir = "/".join(os.path.abspath(__file__).split("\\")[:-1])
print(f'base_dir, {base_dir}')
tp = EnglishTextPreprocessor(base_dir)
tp.load_dict(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/dicts/cmudict.txt')
tp.load_dict(f'F:/Speech/xVA-Synth/arpabet/xvadict-elder_scrolls.json', isCustom=True)
# tp.load_g2p_cache(f'F:/Speech/xva-trainer/python/xvapitch/text_prep/g2p_cache/espeak/espeak_cache_en.txt')
print("start inferring...")
for line in text:
print(f'Line: |{line}|')
phonemes = tp.text_to_phonemes(line)
print(f'xVAARPAbet: |{phonemes}|')
# TODO
# - Add the POS, and extra cleaning stuff