Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from __future__ import print_function | |
import sys | |
import glob | |
import numpy as np | |
DATASET = 'SS-Twitter' # 'SE1604' excluded due to Twitter's ToS | |
METHOD = 'new' | |
# Optional usage: analyze_results.py <dataset> <method> | |
if len(sys.argv) == 3: | |
DATASET = sys.argv[1] | |
METHOD = sys.argv[2] | |
RESULTS_DIR = 'results/' | |
RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, DATASET, METHOD)) | |
if not RESULT_PATHS: | |
print('Could not find results for \'{}\' using \'{}\' in directory \'{}\'.'.format(DATASET, METHOD, RESULTS_DIR)) | |
else: | |
scores = [] | |
for path in RESULT_PATHS: | |
with open(path) as f: | |
score = f.readline().split(':')[1] | |
scores.append(float(score)) | |
average = np.mean(scores) | |
maximum = max(scores) | |
minimum = min(scores) | |
std = np.std(scores) | |
print('Dataset: {}'.format(DATASET)) | |
print('Method: {}'.format(METHOD)) | |
print('Number of results: {}'.format(len(scores))) | |
print('--------------------------') | |
print('Average: {}'.format(average)) | |
print('Maximum: {}'.format(maximum)) | |
print('Minimum: {}'.format(minimum)) | |
print('Standard deviaton: {}'.format(std)) | |