Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import re | |
import json | |
import math | |
from ._errors import FFmpegNormalizeError | |
from ._cmd_utils import NUL, CommandRunner, dict_to_filter_opts | |
from ._logger import setup_custom_logger | |
logger = setup_custom_logger("ffmpeg_normalize") | |
class MediaStream(object): | |
def __init__(self, ffmpeg_normalize, media_file, stream_type, stream_id): | |
""" | |
Arguments: | |
media_file {MediaFile} -- parent media file | |
stream_type {str} -- stream type | |
stream_id {int} -- Audio stream id | |
""" | |
self.ffmpeg_normalize = ffmpeg_normalize | |
self.media_file = media_file | |
self.stream_type = stream_type | |
self.stream_id = stream_id | |
def __repr__(self): | |
return "<{}, {} stream {}>".format( | |
os.path.basename(self.media_file.input_file), | |
self.stream_type, | |
self.stream_id, | |
) | |
class VideoStream(MediaStream): | |
def __init__(self, ffmpeg_normalize, media_file, stream_id): | |
super(VideoStream, self).__init__( | |
media_file, ffmpeg_normalize, "video", stream_id | |
) | |
class SubtitleStream(MediaStream): | |
def __init__(self, ffmpeg_normalize, media_file, stream_id): | |
super(SubtitleStream, self).__init__( | |
media_file, ffmpeg_normalize, "subtitle", stream_id | |
) | |
class AudioStream(MediaStream): | |
def __init__( | |
self, | |
ffmpeg_normalize, | |
media_file, | |
stream_id, | |
sample_rate=None, | |
bit_depth=None, | |
duration=None, | |
): | |
""" | |
Arguments: | |
sample_rate {int} -- in Hz | |
bit_depth {int} | |
duration {int} -- duration in seconds | |
""" | |
super(AudioStream, self).__init__( | |
media_file, ffmpeg_normalize, "audio", stream_id | |
) | |
self.loudness_statistics = {"ebu": None, "mean": None, "max": None} | |
self.sample_rate = sample_rate | |
self.bit_depth = bit_depth | |
self.duration = duration | |
if ( | |
self.ffmpeg_normalize.normalization_type == "ebu" | |
and self.duration | |
and self.duration <= 3 | |
): | |
logger.warn( | |
"Audio stream has a duration of less than 3 seconds. " | |
"Normalization may not work. " | |
"See https://github.com/slhck/ffmpeg-normalize/issues/87 for more info." | |
) | |
def __repr__(self): | |
return "<{}, audio stream {}>".format( | |
os.path.basename(self.media_file.input_file), self.stream_id | |
) | |
def get_stats(self): | |
""" | |
Return statistics | |
""" | |
stats = { | |
"input_file": self.media_file.input_file, | |
"output_file": self.media_file.output_file, | |
"stream_id": self.stream_id, | |
} | |
stats.update(self.loudness_statistics) | |
return stats | |
def get_pcm_codec(self): | |
if not self.bit_depth: | |
return "pcm_s16le" | |
elif self.bit_depth <= 8: | |
return "pcm_s8" | |
elif self.bit_depth in [16, 24, 32, 64]: | |
return f"pcm_s{self.bit_depth}le" | |
else: | |
logger.warning( | |
f"Unsupported bit depth {self.bit_depth}, falling back to pcm_s16le" | |
) | |
return "pcm_s16le" | |
def _get_filter_str_with_pre_filter(self, current_filter): | |
""" | |
Get a filter stringΒ for current_filter, with the pre-filter | |
added before. Applies the input label before. | |
""" | |
input_label = f"[0:{self.stream_id}]" | |
filter_chain = [] | |
if self.media_file.ffmpeg_normalize.pre_filter: | |
filter_chain.append(self.media_file.ffmpeg_normalize.pre_filter) | |
filter_chain.append(current_filter) | |
filter_str = input_label + ",".join(filter_chain) | |
return filter_str | |
def parse_volumedetect_stats(self): | |
""" | |
Use ffmpeg with volumedetect filter to get the mean volume of the input file. | |
""" | |
logger.info( | |
f"Running first pass volumedetect filter for stream {self.stream_id}" | |
) | |
filter_str = self._get_filter_str_with_pre_filter("volumedetect") | |
cmd = [ | |
self.media_file.ffmpeg_normalize.ffmpeg_exe, | |
"-nostdin", | |
"-y", | |
"-i", | |
self.media_file.input_file, | |
"-filter_complex", | |
filter_str, | |
"-vn", | |
"-sn", | |
"-f", | |
"null", | |
NUL, | |
] | |
cmd_runner = CommandRunner(cmd) | |
for progress in cmd_runner.run_ffmpeg_command(): | |
yield progress | |
output = cmd_runner.get_output() | |
logger.debug("Volumedetect command output:") | |
logger.debug(output) | |
mean_volume_matches = re.findall(r"mean_volume: ([\-\d\.]+) dB", output) | |
if mean_volume_matches: | |
self.loudness_statistics["mean"] = float(mean_volume_matches[0]) | |
else: | |
raise FFmpegNormalizeError( | |
f"Could not get mean volume for {self.media_file.input_file}" | |
) | |
max_volume_matches = re.findall(r"max_volume: ([\-\d\.]+) dB", output) | |
if max_volume_matches: | |
self.loudness_statistics["max"] = float(max_volume_matches[0]) | |
else: | |
raise FFmpegNormalizeError( | |
f"Could not get max volume for {self.media_file.input_file}" | |
) | |
def parse_loudnorm_stats(self): | |
""" | |
Run a first pass loudnorm filter to get measured data. | |
""" | |
logger.info(f"Running first pass loudnorm filter for stream {self.stream_id}") | |
opts = { | |
"i": self.media_file.ffmpeg_normalize.target_level, | |
"lra": self.media_file.ffmpeg_normalize.loudness_range_target, | |
"tp": self.media_file.ffmpeg_normalize.true_peak, | |
"offset": self.media_file.ffmpeg_normalize.offset, | |
"print_format": "json", | |
} | |
if self.media_file.ffmpeg_normalize.dual_mono: | |
opts["dual_mono"] = "true" | |
filter_str = self._get_filter_str_with_pre_filter( | |
"loudnorm=" + dict_to_filter_opts(opts) | |
) | |
cmd = [ | |
self.media_file.ffmpeg_normalize.ffmpeg_exe, | |
"-nostdin", | |
"-y", | |
"-i", | |
self.media_file.input_file, | |
"-filter_complex", | |
filter_str, | |
"-vn", | |
"-sn", | |
"-f", | |
"null", | |
NUL, | |
] | |
cmd_runner = CommandRunner(cmd) | |
for progress in cmd_runner.run_ffmpeg_command(): | |
yield progress | |
output = cmd_runner.get_output() | |
logger.debug("Loudnorm first pass command output:") | |
logger.debug(output) | |
output_lines = [line.strip() for line in output.split("\n")] | |
self.loudness_statistics["ebu"] = AudioStream._parse_loudnorm_output( | |
output_lines | |
) | |
def _parse_loudnorm_output(output_lines): | |
loudnorm_start = False | |
loudnorm_end = False | |
for index, line in enumerate(output_lines): | |
if line.startswith("[Parsed_loudnorm"): | |
loudnorm_start = index + 1 | |
continue | |
if loudnorm_start and line.startswith("}"): | |
loudnorm_end = index + 1 | |
break | |
if not (loudnorm_start and loudnorm_end): | |
raise FFmpegNormalizeError( | |
"Could not parse loudnorm stats; no loudnorm-related output found" | |
) | |
try: | |
loudnorm_stats = json.loads( | |
"\n".join(output_lines[loudnorm_start:loudnorm_end]) | |
) | |
logger.debug(f"Loudnorm stats parsed: {json.dumps(loudnorm_stats)}") | |
for key in [ | |
"input_i", | |
"input_tp", | |
"input_lra", | |
"input_thresh", | |
"output_i", | |
"output_tp", | |
"output_lra", | |
"output_thresh", | |
"target_offset", | |
]: | |
# handle infinite values | |
if float(loudnorm_stats[key]) == -float("inf"): | |
loudnorm_stats[key] = -99 | |
elif float(loudnorm_stats[key]) == float("inf"): | |
loudnorm_stats[key] = 0 | |
else: | |
# convert to floats | |
loudnorm_stats[key] = float(loudnorm_stats[key]) | |
return loudnorm_stats | |
except Exception as e: | |
raise FFmpegNormalizeError( | |
f"Could not parse loudnorm stats; wrong JSON format in string: {e}" | |
) | |
def get_second_pass_opts_ebu(self): | |
""" | |
Return second pass loudnorm filter options string for ffmpeg | |
""" | |
if not self.loudness_statistics["ebu"]: | |
raise FFmpegNormalizeError( | |
"First pass not run, you must call parse_loudnorm_stats first" | |
) | |
input_i = float(self.loudness_statistics["ebu"]["input_i"]) | |
if input_i > 0: | |
logger.warn( | |
"Input file had measured input loudness greater than zero ({}), capping at 0".format( | |
"input_i" | |
) | |
) | |
self.loudness_statistics["ebu"]["input_i"] = 0 | |
opts = { | |
"i": self.media_file.ffmpeg_normalize.target_level, | |
"lra": self.media_file.ffmpeg_normalize.loudness_range_target, | |
"tp": self.media_file.ffmpeg_normalize.true_peak, | |
"offset": float(self.loudness_statistics["ebu"]["target_offset"]), | |
"measured_i": float(self.loudness_statistics["ebu"]["input_i"]), | |
"measured_lra": float(self.loudness_statistics["ebu"]["input_lra"]), | |
"measured_tp": float(self.loudness_statistics["ebu"]["input_tp"]), | |
"measured_thresh": float(self.loudness_statistics["ebu"]["input_thresh"]), | |
"linear": "true", | |
"print_format": "json", | |
} | |
if self.media_file.ffmpeg_normalize.dual_mono: | |
opts["dual_mono"] = "true" | |
return "loudnorm=" + dict_to_filter_opts(opts) | |
def get_second_pass_opts_peakrms(self): | |
""" | |
Set the adjustment gain based on chosen option and mean/max volume, | |
return the matching ffmpeg volume filter. | |
""" | |
normalization_type = self.media_file.ffmpeg_normalize.normalization_type | |
target_level = self.media_file.ffmpeg_normalize.target_level | |
if normalization_type == "peak": | |
adjustment = 0 + target_level - self.loudness_statistics["max"] | |
elif normalization_type == "rms": | |
adjustment = target_level - self.loudness_statistics["mean"] | |
else: | |
raise FFmpegNormalizeError( | |
"Can only set adjustment for peak and RMS normalization" | |
) | |
logger.info( | |
"Adjusting stream {} by {} dB to reach {}".format( | |
self.stream_id, adjustment, target_level | |
) | |
) | |
if self.loudness_statistics["max"] + adjustment > 0: | |
logger.warning( | |
"Adjusting will lead to clipping of {} dB".format( | |
self.loudness_statistics["max"] + adjustment | |
) | |
) | |
return f"volume={adjustment}dB" | |