File size: 9,039 Bytes
222e3bd
e935ff6
 
ea6a933
83ebf46
c79df46
2ddb634
e28791b
222e3bd
c79df46
f2cf91b
e494712
 
 
f2cf91b
 
 
0191adb
10cf936
0191adb
 
 
10cf936
 
0191adb
10cf936
 
f2cf91b
 
044fea4
f2cf91b
0191adb
3c34d6c
a1d10f4
 
 
 
0191adb
 
 
 
 
 
 
 
 
a1d10f4
 
0191adb
a1d10f4
 
 
0191adb
a1d10f4
0191adb
 
 
 
49e4ff0
a1d10f4
0191adb
3c34d6c
e28791b
0191adb
a1d10f4
0191adb
 
a1d10f4
0191adb
 
a1d10f4
0191adb
a1d10f4
 
 
0191adb
 
 
a1d10f4
0191adb
 
a1d10f4
 
0191adb
 
a1d10f4
0191adb
 
 
 
a1d10f4
0191adb
 
a1d10f4
 
2ddb634
e1a50fc
 
e283de7
2ddb634
9dcf11b
 
f67cac3
9dcf11b
 
 
f67cac3
 
7d90a74
37132c3
3980780
 
 
dd3c056
3980780
 
0e7dc9e
f67cac3
 
2a8b22c
0191adb
2a8b22c
2ddb634
 
4ea5474
9366d4b
 
2e101cc
5c4653b
 
 
 
 
 
f2cf91b
5c4653b
 
 
 
a65b632
044fea4
 
a65b632
49e4ff0
a65b632
9366d4b
044fea4
 
 
 
a65b632
 
9366d4b
044fea4
5c4653b
83ebf46
 
 
 
 
 
 
 
 
 
 
 
e1c08c5
 
1cd6967
f2cf91b
9366d4b
044fea4
1cd6967
ea6a933
222e3bd
6299b6a
3c34d6c
ea6a933
 
 
83ebf46
a4ca82b
 
 
 
 
 
83ebf46
ea6a933
83ebf46
2ddb634
81f118e
 
2ddb634
 
 
 
 
 
 
ea6a933
3980780
 
49e4ff0
3980780
beb87c6
3980780
 
dcbacca
 
 
 
 
7d90a74
 
 
a9d71f0
044fea4
4ea5474
 
2ddb634
a1d10f4
0191adb
2ddb634
79e5c13
2ddb634
4ea5474
a1d10f4
83ebf46
 
0191adb
 
 
 
9366d4b
 
0191adb
9366d4b
0191adb
e925b78
a1d10f4
 
 
 
 
 
 
 
 
 
3c34d6c
 
b1e470d
3c34d6c
a1d10f4
3c34d6c
f829455
4ea5474
 
2ddb634
 
 
3c34d6c
83ebf46
 
 
 
 
 
 
 
222e3bd
dcbacca
 
044fea4
dcbacca
a1d10f4
5df5032
8314260
 
 
2a8b22c
8314260
 
 
 
4ea5474
 
2ddb634
4ea5474
2ddb634
 
63b454b
2ddb634
 
63b454b
2ddb634
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import sys
import time
import requests
import json
from subprocess import Popen, PIPE
import threading
from huggingface_hub import hf_hub_download
import gradio as gr

hf_model_name = "Pendrokar/xvapitch_nvidia"
hf_cache_models_path = '/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/61b10e60b22bc21c1e072f72f1108b9c2b21e94c/'
# models_path = './resources/app/models/ccby/'
models_path = '/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/61b10e60b22bc21c1e072f72f1108b9c2b21e94c/'


voice_models = [
	("Male #6671", "ccby_nvidia_hifi_6671_M"),
	("Male #6670", "ccby_nvidia_hifi_6670_M"),
	("Male #9017", "ccby_nvidia_hifi_9017_M"),
	("Male #6097", "ccby_nvidia_hifi_6097_M"),
	("Female #92", "ccby_nvidia_hifi_92_F"),
	("Female #11697", "ccby_nvidia_hifi_11697_F"),
	("Female #12787", "ccby_nvidia_hifi_12787_F"),
	("Female #11614", "ccby_nv_hifi_11614_F"),
	("Female #8051", "ccby_nvidia_hifi_8051_F"),
	("Female #9136", "ccby_nvidia_hifi_9136_F"),
]
current_voice_model = None
base_speaker_emb = ''

# order ranked by similarity to English due to the xVASynth's use of ARPAbet instead of IPA
languages = [
    ("🇬🇧 EN", "en"),
    ("🇩🇪 DE", "de"),
    ("🇪🇸 ES", "es"),
    ("🇮🇹 IT", "it"),
    ("🇳🇱 NL", "nl"),
    ("🇵🇹 PT", "pt"),
    ("🇵🇱 PL", "pl"),
    ("🇷🇴 RO", "ro"),
    ("🇸🇪 SV", "sv"),
    ("🇩🇰 DA", "da"),
    ("🇫🇮 FI", "fi"),
    ("🇭🇺 HU", "hu"),
    ("🇬🇷 EL", "el"),
    ("🇫🇷 FR", "fr"),
    ("🇷🇺 RU", "ru"),
    ("🇺🇦 UK", "uk"),
    ("🇹🇷 TR", "tr"),
    ("🇸🇦 AR", "ar"),
    ("🇮🇳 HI", "hi"),
    ("🇯🇵 JP", "jp"),
    ("🇰🇷 KO", "ko"),
    ("🇨🇳 ZH", "zh"),
    ("🇻🇳 VI", "vi"),
    ("🇻🇦 LA", "la"),
    ("HA", "ha"),
    ("SW", "sw"),
    ("🇳🇬 YO", "yo"),
    ("WO", "wo"),
]

# Translated from English by DeepMind's Gemini Pro
default_text = {
	"ar": "هذا هو صوتي.",
	"da": "Sådan lyder min stemme.",
	"de": "So klingt meine Stimme.",
	"el": "Έτσι ακούγεται η φωνή μου.",
	"en": "This is what my voice sounds like.",
	"es": "Así suena mi voz.",
	"fi": "Näin ääneni kuulostaa.",
	"fr": "Voici à quoi ressemble ma voix.",
	"ha": "Wannan ne muryata ke.",
	"hi": "यह मेरी आवाज़ कैसी लगती है।",
	"hu": "Így hangzik a hangom.",
	"it": "Così suona la mia voce.",
	"jp": "これが私の声です。",
	"ko": "여기 제 목소리가 어떤지 들어보세요.",
	"la": "Haec est vox mea sonans.",
	"nl": "Dit is hoe mijn stem klinkt.",
	"pl": "Tak brzmi mój głos.",
	"pt": "É assim que minha voz soa.",
	"ro": "Așa sună vocea mea.",
	"ru": "Вот как звучит мой голос.",
	"sv": "Såhär låter min röst.",
	"sw": "Sauti yangu inasikika hivi.",
	"tr": "Benim sesimin sesi böyle.",
	"uk": "Ось як звучить мій голос.",
	"vi": "Đây là giọng nói của tôi.",
	"wo": "Ndox li neen xewnaal ma.",
	"yo": "Ìyí ni ohùn mi ńlá.",
	"zh": "这是我的声音。",
}

def run_xvaserver():
	# start the process without waiting for a response
	print('Running xVAServer subprocess...\n')
	xvaserver = Popen(['python', f'{os.path.dirname(os.path.abspath(__file__))}/resources/app/server.py'], stdout=PIPE, stderr=PIPE, cwd=f'{os.path.dirname(os.path.abspath(__file__))}/resources/app/')

	# Wait for a moment to ensure the server starts up
	time.sleep(10)

	# Check if the server is running
	if xvaserver.poll() is not None:
		print("Web server failed to start.")
		sys.exit(0)

	# contact local xVASynth server
	print('Attempting to connect to xVASynth...')
	try:
		response = requests.get('http://0.0.0.0:8008')
		response.raise_for_status()  # If the response contains an HTTP error status code, raise an exception
	except requests.exceptions.RequestException as err:
		print('Failed to connect!')
		return

	print('xVAServer running on port 8008')

	# load default model
	load_model("ccby_nvidia_hifi_6671_M")

	# Wait for the process to exit
	xvaserver.wait()

def load_model(voice_model_name):
	model_path =  models_path + voice_model_name

	model_type = 'xVAPitch'
	language = 'en'

	data = {
		'outputs': None,
		'version': '3.0',
		'model': model_path,
		'modelType': model_type,
		'base_lang': language,
		'pluginsContext': '{}',
	}

	embs = base_speaker_emb

	try:
		response = requests.post('http://0.0.0.0:8008/loadModel', json=data, timeout=60)
		response.raise_for_status()  # If the response contains an HTTP error status code, raise an exception
		current_voice_model = voice_model_name

		with open(model_path + '.json', 'r', encoding='utf-8') as f:
		    voice_model_json = json.load(f)
		embs = voice_model_json['games'][0]['base_speaker_emb']
	except requests.exceptions.RequestException as err:
		print('Failed to load voice model!')

	return embs

def predict(
	input_text,
	voice,
	lang,
	pacing,
	pitch,
	energy,
	anger,
	happy,
	sad,
	surprise
):
	# grab only the first 1000 characters
	input_text = input_text[:1000]

	# load voice model if not the current model
	if (current_voice_model != voice):
		base_speaker_emb = load_model(voice)

	model_type = 'xVAPitch'
	pace = pacing if pacing else 1.0
	save_path = '/tmp/xvapitch_audio_sample.wav'
	language = lang
	use_sr = 0
	use_cleanup = 0

	pluginsContext = {}
	pluginsContext["mantella_settings"] = {
		"emAngry": (anger if anger > 0 else 0),
		"emHappy": (happy if happy > 0 else 0),
		"emSad": (sad if sad > 0 else 0),
		"emSurprise": (surprise if surprise > 0 else 0)
	}

	data = {
		'pluginsContext': json.dumps(pluginsContext),
		'modelType': model_type,
		# pad with whitespaces as a workaround to avoid cutoffs
		'sequence': input_text.center(len(input_text) + 2, ' '),
		'pace': pace,
		'outfile': save_path,
		'vocoder': 'n/a',
		'base_lang': language,
		'base_emb': base_speaker_emb,
		'useSR': use_sr,
		'useCleanup': use_cleanup,
	}

	try:
		response = requests.post('http://0.0.0.0:8008/synthesize', json=data, timeout=60)
		response.raise_for_status()  # If the response contains an HTTP error status code, raise an exception
		# response_data = json.loads(response.text)
	except requests.exceptions.RequestException as err:
		print('Failed to synthesize!')
		print('server.log contents:')
		with open('resources/app/server.log', 'r') as f:
			print(f.read())
		return ['', err]

	print('server.log contents:')
	with open('resources/app/server.log', 'r') as f:
		print(f.read())

	return [save_path, response.text]

input_textbox = gr.Textbox(
	label="Input Text",
	value="This is what my voice sounds like.",
	info="Also accepts ARPAbet symbols placed within {} brackets.",
	lines=1,
	max_lines=5,
	autofocus=True
)
pacing_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Duration")
pitch_slider = gr.Slider(0, 1.0, value=0.5, step=0.05, label="Pitch", visible=False)
energy_slider = gr.Slider(0.1, 1.0, value=1.0, step=0.05, label="Energy", visible=False)
anger_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😠 Anger", info="Tread lightly beyond 0.9")
happy_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😃 Happiness", info="Tread lightly beyond 0.7")
sad_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😭 Sadness", info="Duration increased when beyond 0.2")
surprise_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😮 Surprise", info="Does not play well with Happiness with either being beyond 0.3")
voice_radio = gr.Radio(
	voice_models,
	value="ccby_nvidia_hifi_6671_M",
	label="Voice",
	info="NVIDIA HIFI CC-BY-4.0 xVAPitch voice model"
)

def set_default_text(lang):
	input_textbox = gr.Textbox(
		label="Input Text",
		value=default_text[lang],
		lines=1,
		max_lines=5,
		autofocus=True
	)

language_radio = gr.Radio(
	languages,
	value="en",
	label="Language",
	info="Will be more monotone and have an English accent. Tested mostly by a native Briton."
)
# language_radio.change(set_default_text)

gradio_app = gr.Interface(
	predict,
	[
		input_textbox,
		voice_radio,
		language_radio,
		pacing_slider,
		pitch_slider,
		energy_slider,
		anger_slider,
		happy_slider,
		sad_slider,
		surprise_slider
	],
	outputs=[
		gr.Audio(label="22kHz audio output", type="filepath"),
		gr.Textbox(label="xVASynth Server Response")
	],
	title="xVASynth (WIP)",
	clear_btn=gr.Button(visible=False)
	# examples=[
	# 	["Once, I headed in much deeper. But I doubt I'll ever do that again.", 1],
	# 	["You love hurting me, huh?", 1.5],
	# 	["Ah, I see. Well, I'm afraid I can't help with that.", 1],
	# 	["Embrace your demise!", 1],
	# 	["Never come back!", 1]
	# ],
	# cache_examples=None
)


if __name__ == "__main__":
	# Run the web server in a separate thread
	web_server_thread = threading.Thread(target=run_xvaserver)
	print('Starting xVAServer thread')
	web_server_thread.start()

	print('running Gradio interface')
	gradio_app.launch()

	# Wait for the web server thread to finish (shouldn't be reached in normal execution)
	web_server_thread.join()