Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,251 Bytes
e1c08c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from __future__ import absolute_import, print_function, division, unicode_literals
import test_helper
from nose.plugins.attrib import attr
import json
import numpy as np
from torchmoji.class_avg_finetuning import relabel
from torchmoji.sentence_tokenizer import SentenceTokenizer
from torchmoji.finetuning import (
calculate_batchsize_maxlen,
freeze_layers,
change_trainable,
finetune,
load_benchmark
)
from torchmoji.model_def import (
torchmoji_transfer,
torchmoji_feature_encoding,
torchmoji_emojis
)
from torchmoji.global_variables import (
PRETRAINED_PATH,
NB_TOKENS,
VOCAB_PATH,
ROOT_PATH
)
def test_calculate_batchsize_maxlen():
""" Batch size and max length are calculated properly.
"""
texts = ['a b c d',
'e f g h i']
batch_size, maxlen = calculate_batchsize_maxlen(texts)
assert batch_size == 250
assert maxlen == 10, maxlen
def test_freeze_layers():
""" Correct layers are frozen.
"""
model = torchmoji_transfer(5)
keyword = 'output_layer'
model = freeze_layers(model, unfrozen_keyword=keyword)
for name, module in model.named_children():
trainable = keyword.lower() in name.lower()
assert all(p.requires_grad == trainable for p in module.parameters())
def test_change_trainable():
""" change_trainable() changes trainability of layers.
"""
model = torchmoji_transfer(5)
change_trainable(model.embed, False)
assert not any(p.requires_grad for p in model.embed.parameters())
change_trainable(model.embed, True)
assert all(p.requires_grad for p in model.embed.parameters())
def test_torchmoji_transfer_extend_embedding():
""" Defining torchmoji with extension.
"""
extend_with = 50
model = torchmoji_transfer(5, weight_path=PRETRAINED_PATH,
extend_embedding=extend_with)
embedding_layer = model.embed
assert embedding_layer.weight.size()[0] == NB_TOKENS + extend_with
def test_torchmoji_return_attention():
seq_tensor = np.array([[1]])
# test the output of the normal model
model = torchmoji_emojis(weight_path=PRETRAINED_PATH)
# check correct number of outputs
assert len(model(seq_tensor)) == 1
# repeat above described tests when returning attention weights
model = torchmoji_emojis(weight_path=PRETRAINED_PATH, return_attention=True)
assert len(model(seq_tensor)) == 2
def test_relabel():
""" relabel() works with multi-class labels.
"""
nb_classes = 3
inputs = np.array([
[True, False, False],
[False, True, False],
[True, False, True],
])
expected_0 = np.array([True, False, True])
expected_1 = np.array([False, True, False])
expected_2 = np.array([False, False, True])
assert np.array_equal(relabel(inputs, 0, nb_classes), expected_0)
assert np.array_equal(relabel(inputs, 1, nb_classes), expected_1)
assert np.array_equal(relabel(inputs, 2, nb_classes), expected_2)
def test_relabel_binary():
""" relabel() works with binary classification (no changes to labels)
"""
nb_classes = 2
inputs = np.array([True, False, False])
assert np.array_equal(relabel(inputs, 0, nb_classes), inputs)
@attr('slow')
def test_finetune_full():
""" finetuning using 'full'.
"""
DATASET_PATH = ROOT_PATH+'/data/SS-Youtube/raw.pickle'
nb_classes = 2
# Keras and pyTorch implementation of the Adam optimizer are slightly different and change a bit the results
# We reduce the min accuracy needed here to pass the test
# See e.g. https://discuss.pytorch.org/t/suboptimal-convergence-when-compared-with-tensorflow-model/5099/11
min_acc = 0.68
with open(VOCAB_PATH, 'r') as f:
vocab = json.load(f)
data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
print('Loading pyTorch model from {}.'.format(PRETRAINED_PATH))
model = torchmoji_transfer(nb_classes, PRETRAINED_PATH, extend_embedding=data['added'])
print(model)
model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
data['batch_size'], method='full', nb_epochs=1)
print("Finetune full SS-Youtube 1 epoch acc: {}".format(acc))
assert acc >= min_acc
@attr('slow')
def test_finetune_last():
""" finetuning using 'last'.
"""
dataset_path = ROOT_PATH + '/data/SS-Youtube/raw.pickle'
nb_classes = 2
min_acc = 0.68
with open(VOCAB_PATH, 'r') as f:
vocab = json.load(f)
data = load_benchmark(dataset_path, vocab)
print('Loading model from {}.'.format(PRETRAINED_PATH))
model = torchmoji_transfer(nb_classes, PRETRAINED_PATH)
print(model)
model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
data['batch_size'], method='last', nb_epochs=1)
print("Finetune last SS-Youtube 1 epoch acc: {}".format(acc))
assert acc >= min_acc
def test_score_emoji():
""" Emoji predictions make sense.
"""
test_sentences = [
'I love mom\'s cooking',
'I love how you never reply back..',
'I love cruising with my homies',
'I love messing with yo mind!!',
'I love you and now you\'re just gone..',
'This is shit',
'This is the shit'
]
expected = [
np.array([36, 4, 8, 16, 47]),
np.array([1, 19, 55, 25, 46]),
np.array([31, 6, 30, 15, 13]),
np.array([54, 44, 9, 50, 49]),
np.array([46, 5, 27, 35, 34]),
np.array([55, 32, 27, 1, 37]),
np.array([48, 11, 6, 31, 9])
]
def top_elements(array, k):
ind = np.argpartition(array, -k)[-k:]
return ind[np.argsort(array[ind])][::-1]
# Initialize by loading dictionary and tokenize texts
with open(VOCAB_PATH, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, 30)
tokens, _, _ = st.tokenize_sentences(test_sentences)
# Load model and run
model = torchmoji_emojis(weight_path=PRETRAINED_PATH)
prob = model(tokens)
# Find top emojis for each sentence
for i, t_prob in enumerate(list(prob)):
assert np.array_equal(top_elements(t_prob, 5), expected[i])
def test_encode_texts():
""" Text encoding is stable.
"""
TEST_SENTENCES = ['I love mom\'s cooking',
'I love how you never reply back..',
'I love cruising with my homies',
'I love messing with yo mind!!',
'I love you and now you\'re just gone..',
'This is shit',
'This is the shit']
maxlen = 30
batch_size = 32
with open(VOCAB_PATH, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, maxlen)
print('Loading model from {}.'.format(PRETRAINED_PATH))
model = torchmoji_feature_encoding(PRETRAINED_PATH)
print(model)
tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
encoding = model(tokenized)
avg_across_sentences = np.around(np.mean(encoding, axis=0)[:5], 3)
assert np.allclose(avg_across_sentences, np.array([-0.023, 0.021, -0.037, -0.001, -0.005]))
test_encode_texts() |