Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,463 Bytes
222e3bd e935ff6 ea6a933 83ebf46 c79df46 2ddb634 e28791b 222e3bd c79df46 f2cf91b e494712 f2cf91b a0a523d f2cf91b 0191adb 10cf936 0191adb 10cf936 0191adb 10cf936 f2cf91b 044fea4 f2cf91b 0191adb 3c34d6c a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb 49e4ff0 a1d10f4 0191adb 3c34d6c e28791b 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 0191adb a1d10f4 2ddb634 e1a50fc e283de7 2ddb634 9dcf11b f67cac3 9dcf11b f67cac3 7d90a74 37132c3 3980780 dd3c056 3980780 0e7dc9e f67cac3 2a8b22c 0191adb 2a8b22c 2ddb634 4ea5474 9366d4b 2e101cc 5c4653b f2cf91b 5c4653b a65b632 044fea4 a65b632 49e4ff0 a65b632 9366d4b 044fea4 a65b632 9366d4b 044fea4 5c4653b 83ebf46 6115840 83ebf46 e1c08c5 1cd6967 f2cf91b 9366d4b 044fea4 1cd6967 ea6a933 222e3bd 6299b6a 3c34d6c ea6a933 83ebf46 a4ca82b 6115840 a4ca82b 83ebf46 6115840 ea6a933 83ebf46 2ddb634 81f118e 2ddb634 ea6a933 3980780 a0a523d 3980780 49e4ff0 3980780 beb87c6 3980780 a0a523d dcbacca 7d90a74 a9d71f0 044fea4 4ea5474 2ddb634 a1d10f4 0191adb 2ddb634 79e5c13 2ddb634 4ea5474 a1d10f4 83ebf46 0191adb 9366d4b 0191adb 9366d4b 0191adb e925b78 a1d10f4 3c34d6c b1e470d 3c34d6c a1d10f4 3c34d6c f829455 6115840 4ea5474 2ddb634 3c34d6c 83ebf46 6115840 222e3bd dcbacca 044fea4 dcbacca a1d10f4 5df5032 8314260 2a8b22c 8314260 4ea5474 2ddb634 4ea5474 2ddb634 63b454b 2ddb634 63b454b 2ddb634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import os
import sys
import time
import requests
import json
from subprocess import Popen, PIPE
import threading
from huggingface_hub import hf_hub_download
import gradio as gr
hf_model_name = "Pendrokar/xvapitch_nvidia"
hf_cache_models_path = '/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/61b10e60b22bc21c1e072f72f1108b9c2b21e94c/'
models_path = '/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/61b10e60b22bc21c1e072f72f1108b9c2b21e94c/'
# FIXME: currently hardcoded in DeepMoji code
# try:
# os.symlink('/home/user/.cache/huggingface/hub/models--Pendrokar--TorchMoji/snapshots/58217568daaf64d3621245dd5c88c94e651a08d6', '/home/user/app/resources/app/plugins/deepmoji_plugings/model', target_is_directory=True)
# except:
# print('Failed to create symlink to DeepMoji model, may already be there.')
voice_models = [
("Male #6671", "ccby_nvidia_hifi_6671_M"),
("Male #6670", "ccby_nvidia_hifi_6670_M"),
("Male #9017", "ccby_nvidia_hifi_9017_M"),
("Male #6097", "ccby_nvidia_hifi_6097_M"),
("Female #92", "ccby_nvidia_hifi_92_F"),
("Female #11697", "ccby_nvidia_hifi_11697_F"),
("Female #12787", "ccby_nvidia_hifi_12787_F"),
("Female #11614", "ccby_nv_hifi_11614_F"),
("Female #8051", "ccby_nvidia_hifi_8051_F"),
("Female #9136", "ccby_nvidia_hifi_9136_F"),
]
current_voice_model = None
base_speaker_emb = ''
# order ranked by similarity to English due to the xVASynth's use of ARPAbet instead of IPA
languages = [
("🇬🇧 EN", "en"),
("🇩🇪 DE", "de"),
("🇪🇸 ES", "es"),
("🇮🇹 IT", "it"),
("🇳🇱 NL", "nl"),
("🇵🇹 PT", "pt"),
("🇵🇱 PL", "pl"),
("🇷🇴 RO", "ro"),
("🇸🇪 SV", "sv"),
("🇩🇰 DA", "da"),
("🇫🇮 FI", "fi"),
("🇭🇺 HU", "hu"),
("🇬🇷 EL", "el"),
("🇫🇷 FR", "fr"),
("🇷🇺 RU", "ru"),
("🇺🇦 UK", "uk"),
("🇹🇷 TR", "tr"),
("🇸🇦 AR", "ar"),
("🇮🇳 HI", "hi"),
("🇯🇵 JP", "jp"),
("🇰🇷 KO", "ko"),
("🇨🇳 ZH", "zh"),
("🇻🇳 VI", "vi"),
("🇻🇦 LA", "la"),
("HA", "ha"),
("SW", "sw"),
("🇳🇬 YO", "yo"),
("WO", "wo"),
]
# Translated from English by DeepMind's Gemini Pro
default_text = {
"ar": "هذا هو صوتي.",
"da": "Sådan lyder min stemme.",
"de": "So klingt meine Stimme.",
"el": "Έτσι ακούγεται η φωνή μου.",
"en": "This is what my voice sounds like.",
"es": "Así suena mi voz.",
"fi": "Näin ääneni kuulostaa.",
"fr": "Voici à quoi ressemble ma voix.",
"ha": "Wannan ne muryata ke.",
"hi": "यह मेरी आवाज़ कैसी लगती है।",
"hu": "Így hangzik a hangom.",
"it": "Così suona la mia voce.",
"jp": "これが私の声です。",
"ko": "여기 제 목소리가 어떤지 들어보세요.",
"la": "Haec est vox mea sonans.",
"nl": "Dit is hoe mijn stem klinkt.",
"pl": "Tak brzmi mój głos.",
"pt": "É assim que minha voz soa.",
"ro": "Așa sună vocea mea.",
"ru": "Вот как звучит мой голос.",
"sv": "Såhär låter min röst.",
"sw": "Sauti yangu inasikika hivi.",
"tr": "Benim sesimin sesi böyle.",
"uk": "Ось як звучить мій голос.",
"vi": "Đây là giọng nói của tôi.",
"wo": "Ndox li neen xewnaal ma.",
"yo": "Ìyí ni ohùn mi ńlá.",
"zh": "这是我的声音。",
}
def run_xvaserver():
# start the process without waiting for a response
print('Running xVAServer subprocess...\n')
xvaserver = Popen(['python', f'{os.path.dirname(os.path.abspath(__file__))}/resources/app/server.py'], stdout=PIPE, stderr=PIPE, cwd=f'{os.path.dirname(os.path.abspath(__file__))}/resources/app/')
# Wait for a moment to ensure the server starts up
time.sleep(10)
# Check if the server is running
if xvaserver.poll() is not None:
print("Web server failed to start.")
sys.exit(0)
# contact local xVASynth server
print('Attempting to connect to xVASynth...')
try:
response = requests.get('http://0.0.0.0:8008')
response.raise_for_status() # If the response contains an HTTP error status code, raise an exception
except requests.exceptions.RequestException as err:
print('Failed to connect!')
return
print('xVAServer running on port 8008')
# load default model
load_model("ccby_nvidia_hifi_6671_M")
# Wait for the process to exit
xvaserver.wait()
def load_model(voice_model_name):
model_path = models_path + voice_model_name
model_type = 'xVAPitch'
language = 'en'
data = {
'outputs': None,
'version': '3.0',
'model': model_path,
'modelType': model_type,
'base_lang': language,
'pluginsContext': '{}',
}
embs = base_speaker_emb
try:
response = requests.post('http://0.0.0.0:8008/loadModel', json=data, timeout=60)
response.raise_for_status() # If the response contains an HTTP error status code, raise an exception
current_voice_model = voice_model_name
with open(model_path + '.json', 'r', encoding='utf-8') as f:
voice_model_json = json.load(f)
embs = voice_model_json['games'][0]['base_speaker_emb']
except requests.exceptions.RequestException as err:
print('Failed to load voice model!')
return embs
def predict(
input_text,
voice,
lang,
pacing,
pitch,
energy,
anger,
happy,
sad,
surprise,
use_deepmoji
):
# grab only the first 1000 characters
input_text = input_text[:1000]
# load voice model if not the current model
if (current_voice_model != voice):
base_speaker_emb = load_model(voice)
model_type = 'xVAPitch'
pace = pacing if pacing else 1.0
save_path = '/tmp/xvapitch_audio_sample.wav'
language = lang
use_sr = 0
use_cleanup = 0
pluginsContext = {}
pluginsContext["mantella_settings"] = {
"emAngry": (anger if anger > 0 else 0),
"emHappy": (happy if happy > 0 else 0),
"emSad": (sad if sad > 0 else 0),
"emSurprise": (surprise if surprise > 0 else 0),
"run_model": use_deepmoji
}
data = {
'pluginsContext': json.dumps(pluginsContext),
'modelType': model_type,
# pad with whitespaces as a workaround to avoid cutoffs
'sequence': input_text.center(len(input_text) + 2, ' '),
'pace': pace,
'outfile': save_path,
'vocoder': 'n/a',
'base_lang': language,
'base_emb': base_speaker_emb,
'useSR': use_sr,
'useCleanup': use_cleanup,
}
print('Synthesizing...')
try:
response = requests.post('http://0.0.0.0:8008/synthesize', json=data, timeout=60)
response.raise_for_status() # If the response contains an HTTP error status code, raise an exception
# response_data = json.loads(response.text)
except requests.exceptions.RequestException as err:
print('Failed to synthesize!')
save_path = ''
response = {text: 'Failed'}
print('server.log contents:')
with open('resources/app/server.log', 'r') as f:
print(f.read())
return [save_path, response.text]
input_textbox = gr.Textbox(
label="Input Text",
value="This is what my voice sounds like.",
info="Also accepts ARPAbet symbols placed within {} brackets.",
lines=1,
max_lines=5,
autofocus=True
)
pacing_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Duration")
pitch_slider = gr.Slider(0, 1.0, value=0.5, step=0.05, label="Pitch", visible=False)
energy_slider = gr.Slider(0.1, 1.0, value=1.0, step=0.05, label="Energy", visible=False)
anger_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😠 Anger", info="Tread lightly beyond 0.9")
happy_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😃 Happiness", info="Tread lightly beyond 0.7")
sad_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😭 Sadness", info="Duration increased when beyond 0.2")
surprise_slider = gr.Slider(0, 1.0, value=0, step=0.05, label="😮 Surprise", info="Does not play well with Happiness with either being beyond 0.3")
voice_radio = gr.Radio(
voice_models,
value="ccby_nvidia_hifi_6671_M",
label="Voice",
info="NVIDIA HIFI CC-BY-4.0 xVAPitch voice model"
)
def set_default_text(lang):
input_textbox = gr.Textbox(
label="Input Text",
value=default_text[lang],
lines=1,
max_lines=5,
autofocus=True
)
language_radio = gr.Radio(
languages,
value="en",
label="Language",
info="Will be more monotone and have an English accent. Tested mostly by a native Briton."
)
# language_radio.change(set_default_text)
deepmoji_checkbox = gr.Checkbox(label="Use DeepMoji", info="Auto adjust emotional values")
gradio_app = gr.Interface(
predict,
[
input_textbox,
voice_radio,
language_radio,
pacing_slider,
pitch_slider,
energy_slider,
anger_slider,
happy_slider,
sad_slider,
surprise_slider,
deepmoji_checkbox
],
outputs=[
gr.Audio(label="22kHz audio output", type="filepath"),
gr.Textbox(label="xVASynth Server Response")
],
title="xVASynth (WIP)",
clear_btn=gr.Button(visible=False)
# examples=[
# ["Once, I headed in much deeper. But I doubt I'll ever do that again.", 1],
# ["You love hurting me, huh?", 1.5],
# ["Ah, I see. Well, I'm afraid I can't help with that.", 1],
# ["Embrace your demise!", 1],
# ["Never come back!", 1]
# ],
# cache_examples=None
)
if __name__ == "__main__":
# Run the web server in a separate thread
web_server_thread = threading.Thread(target=run_xvaserver)
print('Starting xVAServer thread')
web_server_thread.start()
print('running Gradio interface')
gradio_app.launch()
# Wait for the web server thread to finish (shouldn't be reached in normal execution)
web_server_thread.join()
|