File size: 6,589 Bytes
222e3bd
e935ff6
ea6a933
83ebf46
ef93563
c79df46
ef93563
8871135
6f94cd7
74e078c
 
f8e12ae
79e67e9
f2cf91b
ef93563
 
 
8e17b76
79e67e9
3b01bbd
f8e12ae
 
 
 
 
79e67e9
3b01bbd
 
b975979
79e67e9
 
 
 
 
 
 
 
 
 
 
f2cf91b
 
f70eab2
044fea4
f2cf91b
9366d4b
328b0e0
5f05fba
b975979
 
 
 
 
c3f5c5f
79e67e9
 
f8e12ae
 
b975979
 
f8e12ae
5c4653b
 
 
 
f2cf91b
5c4653b
 
 
 
a65b632
22b65d9
a65b632
477ec86
9366d4b
f70eab2
044fea4
 
 
c1ee979
fdc4995
328b0e0
fdc4995
328b0e0
a65b632
22b65d9
9366d4b
328b0e0
5c4653b
1cd6967
74e078c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328b0e0
 
74e078c
 
 
 
 
328b0e0
74e078c
f70eab2
74e078c
 
 
 
 
 
 
 
 
 
 
 
 
1ae721a
dcbacca
76e9cbc
74e078c
 
 
 
 
 
 
 
 
 
 
 
 
76e9cbc
74e078c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328b0e0
 
af75fe2
 
 
 
328b0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2ffb1
 
 
 
 
 
 
 
 
 
74e078c
 
 
 
af75fe2
 
 
 
74e078c
76e9cbc
294478a
4ea5474
294478a
79e67e9
74e078c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import sys
import requests
import json
from huggingface_hub import HfApi

# start xVASynth service (no HTTP)
import resources.app.no_server as xvaserver

from gr_client import BlocksDemo

# TODO: move snapshots to common folder & use an models array
# NVIDIA NeMo models
hf_model_name = "Pendrokar/xvapitch_nvidia"
model_repo = HfApi()
commits = model_repo.list_repo_commits(repo_id=hf_model_name)
latest_commit_sha = commits[0].commit_id
hf_cache_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_nvidia/snapshots/{latest_commit_sha}/'
models_path = hf_cache_models_path

# Expresso models
commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvapitch_expresso')
latest_commit_sha = commits[0].commit_id
hf_cache_expresso_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvapitch_expresso/snapshots/{latest_commit_sha}/'

# Lojban model
commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvasynth_lojban')
latest_commit_sha = commits[0].commit_id
hf_cache_lojban_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvasynth_lojban/snapshots/{latest_commit_sha}/'

# Robotic model
hf_cache_robotic_models_path = ''
try:
	commits = model_repo.list_repo_commits(repo_id='Pendrokar/xvasynth_cabal', token=os.getenv('HF_TOKEN'))
	latest_commit_sha = commits[0].commit_id
	hf_cache_robotic_models_path = f'/home/user/.cache/huggingface/hub/models--Pendrokar--xvasynth_cabal/snapshots/{latest_commit_sha}/'
except:
	print('Robotic voice not loaded!')
	pass


current_voice_model = None
current_voice_type = None
base_speaker_emb = ''

def load_model(voice_model_name):
	global current_voice_model, current_voice_type, base_speaker_emb

	if voice_model_name == 'x_selpahi':
		# Lojban
		model_path =  hf_cache_lojban_models_path + voice_model_name
		model_type = 'FastPitch1.1'
	else:
		model_path =  models_path + voice_model_name
		if voice_model_name == 'cnc_cabal':
			model_path =  hf_cache_robotic_models_path + voice_model_name
		if voice_model_name == 'x_ex02':
			model_path =  hf_cache_expresso_models_path + voice_model_name
		model_type = 'xVAPitch'

	language = 'en' # seems to have no effect if generated text is for a different language

	data = {
		'outputs': None,
		'version': '3.0',
		'model': model_path,
		'modelType': model_type,
		'base_lang': language,
		'pluginsContext': '{}',
	}

	print('Loading voice model...')
	try:
		json_data = xvaserver.loadModel(data)
		current_voice_model = voice_model_name
		current_voice_type = model_type

		with open(model_path + '.json', 'r', encoding='utf-8') as f:
		    voice_model_json = json.load(f)

		if model_type == 'xVAPitch':
			base_speaker_emb = voice_model_json['games'][0]['base_speaker_emb']
		elif model_type == 'FastPitch1.1':
			base_speaker_emb = voice_model_json['games'][0]['resemblyzer']
	except requests.exceptions.RequestException as err:
		print(f'FAILED to load voice model: {err}')

	return base_speaker_emb


class LocalBlocksDemo(BlocksDemo):
	def predict(
		self,
		input_text,
		voice,
		lang,
		pacing,
		pitch,
		energy,
		anger,
		happy,
		sad,
		surprise,
		use_deepmoji
	):
		global current_voice_model, current_voice_type, base_speaker_emb

		# grab only the first 1000 characters
		input_text = input_text[:1000]

		# load voice model if not the current model
		if (current_voice_model != voice):
			load_model(voice)

		model_type = current_voice_type
		pace = pacing if pacing else 1.0
		save_path = '/tmp/xvapitch_audio_sample.wav'
		language = lang
		use_sr = 0
		use_cleanup = 0

		pluginsContext = {}
		pluginsContext["mantella_settings"] = {
			"emAngry": (anger if anger > 0 else 0),
			"emHappy": (happy if happy > 0 else 0),
			"emSad": (sad if sad > 0 else 0),
			"emSurprise": (surprise if surprise > 0 else 0),
			"run_model": use_deepmoji
		}


		data = {
			'pluginsContext': json.dumps(pluginsContext),
			'modelType': model_type,
			# pad with whitespaces as a workaround to avoid cutoffs
			'sequence': input_text.center(len(input_text) + 2, ' '),
			'pace': pace,
			'outfile': save_path,
			'vocoder': 'n/a',
			'base_lang': language,
			'base_emb': base_speaker_emb,
			'useSR': use_sr,
			'useCleanup': use_cleanup,
		}

		print('Synthesizing...')
		try:
			json_data = xvaserver.synthesize(data)
			# response = requests.post('http://0.0.0.0:8008/synthesize', json=data, timeout=60)
			# response.raise_for_status()  # If the response contains an HTTP error status code, raise an exception
			# json_data = json.loads(response.text)
		except requests.exceptions.RequestException as err:
			print('FAILED to synthesize: {err}')
			save_path = ''
			response = {'text': '{"message": "Failed"}'}
			json_data = {
				'arpabet': ['Failed'],
				'durations': [0],
				'em_anger': anger,
				'em_happy': happy,
				'em_sad': sad,
				'em_surprise': surprise,
			}

		# print('server.log contents:')
		# with open('resources/app/server.log', 'r') as f:
		# 	print(f.read())

		arpabet_html = ''
		if voice == 'x_selpahi':
			em_angry = 0
			em_happy = 0
			em_sad = 0
			em_surprise = 0
		else:
			arpabet_html = '<h6>ARPAbet & Durations</h6>'
			arpabet_html += '<table style="margin: 0 var(--size-2)"><tbody><tr>'
			arpabet_nopad = json_data['arpabet'].split('|PAD|')
			arpabet_symbols = json_data['arpabet'].split('|')
			wpad_len = len(arpabet_symbols)
			nopad_len = len(arpabet_nopad)
			total_dur_length = 0
			for symb_i in range(wpad_len):
				if (arpabet_symbols[symb_i] == '<PAD>'):
					continue
				total_dur_length += float(json_data['durations'][symb_i])

			for symb_i in range(wpad_len):
				if (arpabet_symbols[symb_i] == '<PAD>'):
					continue

				arpabet_length = float(json_data['durations'][symb_i])
				cell_width = round(arpabet_length / total_dur_length * 100, 2)
				arpabet_html += '<td class="arpabet" style="width: '\
					+ str(cell_width)\
					+'%">'\
					+ arpabet_symbols[symb_i]\
					+ '</td> '
			arpabet_html += '<tr></tbody></table>'

			if use_deepmoji:
				em_angry = round(json_data['em_angry'][0], 2)
				em_happy = round(json_data['em_happy'][0], 2)
				em_sad = round(json_data['em_sad'][0], 2)
				em_surprise = round(json_data['em_surprise'][0], 2)
			else:
				em_angry = anger
				em_happy = happy
				em_sad = sad
				em_surprise = surprise

		return [
			save_path,
			arpabet_html,
			em_angry,
			em_happy,
			em_sad,
			em_surprise,
			json_data
		]

if __name__ == "__main__":
	print('running custom Gradio interface')
	demo = LocalBlocksDemo(models_path, hf_cache_lojban_models_path, hf_cache_robotic_models_path)
	demo.block.launch()