swap-mukham_WIP / face_analyser.py
Peleck's picture
Initial
fa8453f
raw
history blame
5.73 kB
import os
import cv2
import threading
import numpy as np
from tqdm import tqdm
import concurrent.futures
import default_paths as dp
from dataclasses import dataclass
from utils.arcface import ArcFace
from utils.gender_age import GenderAge
from utils.retinaface import RetinaFace
cache = {}
@dataclass
class Face:
bbox: np.ndarray
kps: np.ndarray
det_score: float
embedding: np.ndarray
gender: int
age: int
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
if hasattr(self, key):
setattr(self, key, value)
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
single_face_detect_conditions = [
"best detection",
"left most",
"right most",
"top most",
"bottom most",
"middle",
"biggest",
"smallest",
]
multi_face_detect_conditions = [
"all face",
"specific face",
"age less than",
"age greater than",
"all male",
"all female"
]
face_detect_conditions = multi_face_detect_conditions + single_face_detect_conditions
def get_single_face(faces, method="best detection"):
total_faces = len(faces)
if total_faces == 0:
return None
if total_faces == 1:
return faces[0]
if method == "best detection":
return sorted(faces, key=lambda face: face["det_score"])[-1]
elif method == "left most":
return sorted(faces, key=lambda face: face["bbox"][0])[0]
elif method == "right most":
return sorted(faces, key=lambda face: face["bbox"][0])[-1]
elif method == "top most":
return sorted(faces, key=lambda face: face["bbox"][1])[0]
elif method == "bottom most":
return sorted(faces, key=lambda face: face["bbox"][1])[-1]
elif method == "middle":
return sorted(faces, key=lambda face: (
(face["bbox"][0] + face["bbox"][2]) / 2 - 0.5) ** 2 +
((face["bbox"][1] + face["bbox"][3]) / 2 - 0.5) ** 2)[len(faces) // 2]
elif method == "biggest":
return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[-1]
elif method == "smallest":
return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[0]
def filter_face_by_age(faces, age, method="age less than"):
if method == "age less than":
return [face for face in faces if face["age"] < age]
elif method == "age greater than":
return [face for face in faces if face["age"] > age]
elif method == "age equals to":
return [face for face in faces if face["age"] == age]
def cosine_distance(a, b):
a /= np.linalg.norm(a)
b /= np.linalg.norm(b)
return 1 - np.dot(a, b)
def is_similar_face(face1, face2, threshold=0.6):
distance = cosine_distance(face1["embedding"], face2["embedding"])
return distance < threshold
class AnalyseFace:
def __init__(self, provider=["CPUExecutionProvider"], session_options=None):
self.detector = RetinaFace(model_file=dp.RETINAFACE_PATH, provider=provider, session_options=session_options)
self.recognizer = ArcFace(model_file=dp.ARCFACE_PATH, provider=provider, session_options=session_options)
self.gender_age = GenderAge(model_file=dp.GENDERAGE_PATH, provider=provider, session_options=session_options)
self.detect_condition = "best detection"
self.detection_size = (640, 640)
self.detection_threshold = 0.5
def analyser(self, img, skip_task=[]):
bboxes, kpss = self.detector.detect(img, input_size=self.detection_size, det_thresh=self.detection_threshold)
faces = []
for i in range(bboxes.shape[0]):
feat, gender, age = None, None, None
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = None
if kpss is not None:
kps = kpss[i]
if 'embedding' not in skip_task:
feat = self.recognizer.get(img, kpss[i])
if 'gender_age' not in skip_task:
gender, age = self.gender_age.predict(img, kpss[i])
face = Face(bbox=bbox, kps=kps, det_score=det_score, embedding=feat, gender=gender, age=age)
faces.append(face)
return faces
def get_faces(self, image, scale=1., skip_task=[]):
if isinstance(image, str):
image = cv2.imread(image)
faces = self.analyser(image, skip_task=skip_task)
if scale != 1: # landmark-scale
for i, face in enumerate(faces):
landmark = face['kps']
center = np.mean(landmark, axis=0)
landmark = center + (landmark - center) * scale
faces[i]['kps'] = landmark
return faces
def get_face(self, image, scale=1., skip_task=[]):
faces = self.get_faces(image, scale=scale, skip_task=skip_task)
return get_single_face(faces, method=self.detect_condition)
def get_averaged_face(self, images, method="mean"):
if not isinstance(images, list):
images = [images]
face = self.get_face(images[0], scale=1., skip_task=[])
if len(images) > 1:
embeddings = [face['embedding']]
for image in images[1:]:
face = self.get_face(image, scale=1., skip_task=[])
embeddings.append(face['embedding'])
if method == "mean":
avg_embedding = np.mean(embeddings, axis=0)
elif method == "median":
avg_embedding = np.median(embeddings, axis=0)
face['embedding'] = avg_embedding
return face