|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
processor = BlipProcessor.from_pretrained("noamrot/FuseCap") |
|
model = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap").to(device) |
|
|
|
def inference(raw_image): |
|
text = "a picture of " |
|
inputs = processor(raw_image, text, return_tensors="pt").to(device) |
|
out = model.generate(**inputs) |
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
return caption |
|
|
|
|
|
inputs = [gr.Image(type='pil', interactive=False),] |
|
outputs = gr.outputs.Textbox(label="Caption") |
|
|
|
description = "Gradio demo for FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions. This demo features a BLIP-based model, trained using FuseCap." |
|
examples = [["surfer.jpg"], ["bike.jpg"]] |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2305.17718' target='_blank'>FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions</a>" |
|
|
|
|
|
iface = gr.Interface(fn=inference, |
|
inputs="image", |
|
outputs="text", |
|
title="FuseCap", |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
enable_queue=True) |
|
iface.launch() |
|
|
|
|