Spaces:
Sleeping
Sleeping
File size: 14,839 Bytes
6d2e71d c3b0d93 4f234f9 6a4537e 4f234f9 6a4537e 4f234f9 6a4537e 4f234f9 6a4537e 4f234f9 a30b8db 4f234f9 4d297fe 6a4537e 4f234f9 4d297fe 4f234f9 6a4537e 4f234f9 bb549fc 4f234f9 bb549fc 4f234f9 0eb2af9 4f234f9 0eb2af9 4f234f9 6a4537e 4f234f9 6d2e71d 4f234f9 6b87984 4f234f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# import os
# os.system("pip uninstall -y gradio")
# os.system("pip install gradio==3.43.2")
import argparse
import sys
import os
# import cv2
import glob
import gradio as gr
import numpy as np
import json
from PIL import Image
from tqdm import tqdm
from pathlib import Path
import uvicorn
from fastapi.staticfiles import StaticFiles
import random
import time
import requests
from fastapi import FastAPI
from conversation import SeparatorStyle, conv_templates, default_conversation
from utils import (
build_logger,
moderation_msg,
server_error_msg,
)
from config import cur_conv
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"Content-Type": "application/json"}
# create a FastAPI app
app = FastAPI()
# # create a static directory to store the static files
# static_dir = Path('/data/Multimodal-RAG/GenerativeAIExamples/ChatQnA/langchain/redis/chips-making-deals/')
static_dir = Path('/')
# mount FastAPI StaticFiles server
app.mount("/static", StaticFiles(directory=static_dir), name="static")
theme = gr.themes.Base(
primary_hue=gr.themes.Color(
c100="#dbeafe", c200="#bfdbfe", c300="#93c5fd", c400="#60a5fa", c50="#eff6ff", c500="#0054ae", c600="#00377c", c700="#00377c", c800="#1e40af", c900="#1e3a8a", c950="#0a0c2b"),
secondary_hue=gr.themes.Color(
c100="#dbeafe", c200="#bfdbfe", c300="#93c5fd", c400="#60a5fa", c50="#eff6ff", c500="#0054ae", c600="#0054ae", c700="#0054ae", c800="#1e40af", c900="#1e3a8a", c950="#1d3660"),
).set(
body_background_fill_dark='*primary_950',
body_text_color_dark='*neutral_300',
border_color_accent='*primary_700',
border_color_accent_dark='*neutral_800',
block_background_fill_dark='*primary_950',
block_border_width='2px',
block_border_width_dark='2px',
button_primary_background_fill_dark='*primary_500',
button_primary_border_color_dark='*primary_500',
)
css='''
@font-face {
font-family: IntelOne;
src: url("file/assets/intelone-bodytext-font-family-regular.ttf");
}
'''
## <td style="border-bottom:0"><img src="file/assets/DCAI_logo.png" height="300" width="300"></td>
html_title = '''
<table>
<tr style="height:150px">
<td style="border-bottom:0"><img src="file/assets/intel-labs.png" height="100" width="100"></td>
<td style="border-bottom:0; vertical-align:bottom">
<p style="font-size:xx-large;font-family:IntelOne, Georgia, sans-serif;color: white;">
Cognitive AI:
<br>
Multimodal RAG on Videos
</p>
</td>
<td style="border-bottom:0;"><img src="file/assets/gaudi.png" width="100" height="100"></td>
<td style="border-bottom:0;"><img src="file/assets/xeon.png" width="100" height="100"></td>
<td style="border-bottom:0;"><img src="file/assets/IDC7.png" width="400" height="350"></td>
</tr>
</table>
'''
# force dark theme
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
debug = False
def print_debug(t):
if debug:
print(t)
# https://stackoverflow.com/a/57781047
# Resizes a image and maintains aspect ratio
# def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# # Grab the image size and initialize dimensions
# dim = None
# (h, w) = image.shape[:2]
# # Return original image if no need to resize
# if width is None and height is None:
# return image
# # We are resizing height if width is none
# if width is None:
# # Calculate the ratio of the height and construct the dimensions
# r = height / float(h)
# dim = (int(w * r), height)
# # We are resizing width if height is none
# else:
# # Calculate the ratio of the width and construct the dimensions
# r = width / float(w)
# dim = (width, int(h * r))
# # Return the resized image
# return cv2.resize(image, dim, interpolation=inter)
def time_to_frame(time, fps):
'''
convert time in seconds into frame number
'''
return int(time * fps - 1)
def str2time(strtime):
strtime = strtime.strip('"')
hrs, mins, seconds = [float(c) for c in strtime.split(':')]
total_seconds = hrs * 60**2 + mins * 60 + seconds
return total_seconds
def get_iframe(video_path: str, start: int = -1, end: int = -1):
return f"""<video controls="controls" preload="metadata" src="{video_path}" width="540" height="310"></video>"""
#TODO
# def place(galleries, evt: gr.SelectData):
# print(evt.value)
# start_time = evt.value.split('||')[0].strip()
# print(start_time)
# # sub_video_id = evt.value.split('|')[-1]
# if start_time in start_time_index_map.keys():
# sub_video_id = start_time_index_map[start_time]
# else:
# sub_video_id = 0
# path_to_sub_video = f"/static/video_embeddings/mp4.keynotes23/sub-videos/keynotes23_split{sub_video_id}.mp4"
# # return evt.value
# return get_iframe(path_to_sub_video)
# def process(text_query):
# tmp_dir = os.environ.get('VID_CACHE_DIR', os.environ.get('TMPDIR', './video_embeddings'))
# frames, transcripts = run_query(text_query, path=tmp_dir)
# # return video_file_path, [(image, caption) for image, caption in zip(frame_paths, transcripts)]
# return [(frame, caption) for frame, caption in zip(frames, transcripts)], ""
description = "This Space lets you engage with multimodal RAG on a video through a chat box."
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
# textbox = gr.Textbox(
# show_label=False, placeholder="Enter text and press ENTER", container=False
# )
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = cur_conv.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 1
def add_text(state, text, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 :
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 1
text = text[:1536] # Hard cut-off
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 1
def http_bot(
state, request: gr.Request
):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
if state.skip_next:
# This generate call is skipped due to invalid inputs
path_to_sub_videos = state.get_path_to_subvideos()
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (no_change_btn,) * 1
return
if len(state.messages) == state.offset + 2:
# First round of conversation
new_state = cur_conv.copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=False)
# Make requests
is_very_first_query = True
if len(all_images) == 0:
# first query need to do RAG
pload = {
"query": prompt,
}
else:
# subsequence queries, no need to do Retrieval
is_very_first_query = False
pload = {
"prompt": prompt,
"path-to-image": all_images[0],
}
if is_very_first_query:
url = worker_addr + "/v1/rag/chat"
else:
url = worker_addr + "/v1/rag/multi_turn_chat"
logger.info(f"==== request ====\n{pload}")
logger.info(f"==== url request ====\n{url}")
#uncomment this for testing UI only
# state.messages[-1][-1] = f"response {len(state.messages)}"
# yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 1
# return
state.messages[-1][-1] = "▌"
path_to_sub_videos = state.get_path_to_subvideos()
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (disable_btn,) * 1
try:
# Stream output
response = requests.post(url, headers=headers, json=pload, timeout=100, stream=True)
# print("response")
# logger.info(response)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
res = json.loads(chunk.decode())
## old_method
# if response.status_code == 200:
# cur_json = ""
# for chunk in response:
# # print('chunk is ---> ', chunk.decode('utf-8'))
# cur_json += chunk.decode('utf-8')
# try:
# res = json.loads(cur_json)
# except:
# # a whole json does not include in this chunk, need to concatenate with next chunk
# continue
# # successfully load json into res
# cur_json = ""
if state.path_to_img is None and 'path-to-image' in res:
state.path_to_img = res['path-to-image']
if state.video_title is None and 'title' in res:
state.video_title = res['title']
if 'answer' in res:
# print(f"answer is {res['answer']}")
output = res["answer"]
# print(f"state.messages is {state.messages[-1][-1]}")
state.messages[-1][-1] = state.messages[-1][-1][:-1] + output + "▌"
path_to_sub_videos = state.get_path_to_subvideos()
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (disable_btn,) * 1
time.sleep(0.03)
# else:
# raise requests.exceptions.RequestException()
except requests.exceptions.RequestException as e:
# print(e)
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(), None) + (
enable_btn,
)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
path_to_sub_videos = state.get_path_to_subvideos()
logger.info(path_to_sub_videos)
yield (state, state.to_gradio_chatbot(), path_to_sub_videos) + (enable_btn,) * 1
finish_tstamp = time.time()
logger.info(f"{state.messages[-1][-1]}")
# with open(get_conv_log_filename(), "a") as fout:
# data = {
# "tstamp": round(finish_tstamp, 4),
# "url": url,
# "start": round(start_tstamp, 4),
# "finish": round(start_tstamp, 4),
# "state": state.dict(),
# }
# fout.write(json.dumps(data) + "\n")
return
dropdown_list = [
"What did Intel present at Nasdaq?",
"From Chips Act Funding Announcement, by which year is Intel committed to Net Zero gas emissions?",
"What percentage of renewable energy is Intel planning to use?",
"a band playing music",
"Which US state is Silicon Desert referred to?",
"and which US state is Silicon Forest referred to?",
"How do trigate fins work?",
"What is the advantage of trigate over planar transistors?",
"What are key objectives of transistor design?",
"How fast can transistors switch?",
]
with gr.Blocks(theme=theme, css=css) as demo:
# gr.Markdown(description)
state = gr.State(default_conversation.copy())
gr.HTML(value=html_title)
demo.load(_js=js_func)
with gr.Row():
with gr.Column(scale=4):
video = gr.Video(height=512, width=512, elem_id="video" )
with gr.Column(scale=7):
chatbot = gr.Chatbot(
elem_id="chatbot", label="Multimodal RAG Chatbot", height=450
)
with gr.Row():
with gr.Column(scale=8):
# textbox.render()
textbox = gr.Dropdown(
dropdown_list,
allow_custom_value=True,
# show_label=False,
# container=False,
label="Query",
info="Enter your query here or choose a sample from the dropdown list!"
)
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=True
)
with gr.Row(elem_id="buttons") as button_row:
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
# Register listeners
btn_list = [clear_btn]
clear_btn.click(
clear_history, None, [state, chatbot, textbox, video] + btn_list
)
# textbox.submit(
# add_text,
# [state, textbox],
# [state, chatbot, textbox,] + btn_list,
# ).then(
# http_bot,
# [state, ],
# [state, chatbot, video] + btn_list,
# )
submit_btn.click(
add_text,
[state, textbox],
[state, chatbot, textbox,] + btn_list,
).then(
http_bot,
[state, ],
[state, chatbot, video] + btn_list,
)
print_debug('Beginning')
# btn.click(fn=process,
# inputs=[text_query],
# # outputs=[video_player, gallery],
# outputs=[gallery, html],
# )
# gallery.select(place, [gallery], [html])
demo.queue()
app = gr.mount_gradio_app(app, demo, path='/')
share = False
enable_queue = True
# try:
# demo.queue(concurrency_count=3)#, enable_queue=False)
# demo.launch(enable_queue=enable_queue, share=share, server_port=17808, server_name='0.0.0.0')
# #BATCH -w isl-gpu48
# except:
# demo.launch(enable_queue=False, share=share, server_port=17808, server_name='0.0.0.0')
# serve the app
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--concurrency-count", type=int, default=20)
parser.add_argument("--share", action="store_true")
parser.add_argument("--worker-address", type=str, default="198.175.88.247")
parser.add_argument("--worker-port", type=int, default=8080)
args = parser.parse_args()
logger.info(f"args: {args}")
global worker_addr
worker_addr = f"http://{args.worker_address}:{args.worker_port}"
uvicorn.run(app, host=args.host, port=args.port)
# for i in examples:
# print(f'Processing {i[0]}')
# results = process(*i)
# print(f'{len(results[0])} results returned')
|