File size: 14,403 Bytes
55fdf91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from helper import *
import streamlit as st
import uuid
import copy
import pandas as pd
import openai
from requests.models import ChunkedEncodingError

st.set_page_config(page_title='ChatGPT Assistant', layout='wide')
# 自定义元素样式
# 第一个是减少侧边栏顶部空白,不同版本的st存在区别(此处适用1.19.0)
st.markdown("""
    <style>
    div.css-1vq4p4l.e1fqkh3o4 {
        padding-top: 3.5rem !important;
        }
    .avatar {
        display: flex;
        align-items: center;
        gap: 10px;
        pointer-events: none;
        margin:10px;
    }
    .avatar svg {
        width: 30px;
        height: 30px;
    }
    .avatar h2 {
        font-size: 20px;
        margin: 0px;
    } 

    .content-div {
        padding: 5px 20px;
        margin: 5px;
        text-align: left;
        border-radius: 10px;
        border: none;
        line-height: 1.6;   
        font-size:17px; 
        }
    .content-div p{
        padding: 4px;
        margin : 2px;
    } 
    #chat-window{
        color: black;
        padding: 10px 0px;
        text-decoration: none;
        font-size: 25px;
    }
    #chat-window:hover{
        color: blue;
    }
    </style>
""", unsafe_allow_html=True)
if "initial_settings" not in st.session_state:
    # 历史聊天窗口
    st.session_state['history_chats'] = get_history_chats()
    # ss参数初始化
    st.session_state['pre_chat'] = None
    st.session_state['if_chat_change'] = False
    st.session_state['error_info'] = ''
    st.session_state['user_input_content'] = ''
    st.session_state["current_chat_index"] = 0
    # 设置完成
    st.session_state["initial_settings"] = True

with st.sidebar:
    # 此处href与下文的st.header内容相对应,跳转锚点
    st.markdown("<a href='#chatgpt-assistant' id='chat-window'>🤖 聊天窗口</a>", unsafe_allow_html=True)
    current_chat = st.radio(
        label='历史聊天窗口',
        format_func=lambda x: x.split('_')[0] if '_' in x else x,
        options=st.session_state['history_chats'],
        label_visibility='collapsed',
        index=st.session_state["current_chat_index"],
        key='current_chat' + st.session_state['history_chats'][st.session_state["current_chat_index"]],
        # on_change=current_chat_callback  # 此处不适合用回调,无法识别到窗口增减的变动
    )
    if st.session_state['pre_chat'] != current_chat:
        st.session_state['pre_chat'] = current_chat
        st.session_state['if_chat_change'] = True
    st.write("---")


    def create_chat_button_callback():
        st.session_state['history_chats'] = ['New Chat_' + str(uuid.uuid4())] + st.session_state['history_chats']
        st.session_state["current_chat_index"] = 0


    def delete_chat_button_callback():
        if len(st.session_state['history_chats']) == 1:
            chat_init = 'New Chat_' + str(uuid.uuid4())
            st.session_state['history_chats'].append(chat_init)
            st.session_state['current_chat'] = chat_init
        pre_chat_index = st.session_state['history_chats'].index(current_chat)
        if pre_chat_index > 0:
            st.session_state["current_chat_index"] = st.session_state['history_chats'].index(current_chat) - 1
        else:
            st.session_state["current_chat_index"] = 0
        st.session_state['history_chats'].remove(current_chat)
        remove_data(current_chat)


    c1, c2 = st.columns(2)
    create_chat_button = c1.button('新建', use_container_width=True, key='create_chat_button',
                                   on_click=create_chat_button_callback)
    delete_chat_button = c2.button('删除', use_container_width=True, key='delete_chat_button',
                                   on_click=delete_chat_button_callback)

# 加载数据
if ("history" + current_chat not in st.session_state) or (st.session_state['if_chat_change']):
    for key, value in load_data(current_chat).items():
        if key == 'history':
            st.session_state[key + current_chat] = value
        else:
            for k, v in value.items():
                st.session_state[k + current_chat] = v
    st.session_state['if_chat_change'] = False

# 对话展示
show_messages(st.session_state["history" + current_chat])


# 数据写入文件
def write_data(new_chat_name=current_chat):
    st.session_state["paras"] = {
        "temperature": st.session_state["temperature" + current_chat],
        "top_p": st.session_state["top_p" + current_chat],
        "presence_penalty": st.session_state["presence_penalty" + current_chat],
        "frequency_penalty": st.session_state["frequency_penalty" + current_chat],
    }
    st.session_state["contexts"] = {
        "context_select": st.session_state["context_select" + current_chat],
        "context_input": st.session_state["context_input" + current_chat],
        "context_level": st.session_state["context_level" + current_chat],
    }
    save_data(new_chat_name, st.session_state["history" + current_chat], st.session_state["paras"],
              st.session_state["contexts"])


# 输入内容展示
area_user_svg = st.empty()
area_user_content = st.empty()
# 回复展示
area_gpt_svg = st.empty()
area_gpt_content = st.empty()
# 报错展示
area_error = st.empty()

st.write("\n")
st.header('ChatGPT Assistant')
tap_input, tap_context, tap_set = st.tabs(['💬 聊天', '🗒️ 预设', '⚙️ 设置'])

with tap_context:
    set_context_list = list(set_context_all.keys())
    context_select_index = set_context_list.index(st.session_state['context_select' + current_chat])
    st.selectbox(label='选择上下文', options=set_context_list, key='context_select' + current_chat,
                 index=context_select_index, on_change=write_data)
    st.caption(set_context_all[st.session_state['context_select' + current_chat]])
    st.text_area(label='补充或自定义上下文:', key="context_input" + current_chat,
                 value=st.session_state['context_input' + current_chat],
                 on_change=write_data)

with tap_set:
    def clear_button_callback():
        st.session_state['history' + current_chat] = copy.deepcopy(initial_content_history)
        write_data()


    st.button("清空聊天记录", use_container_width=True, on_click=clear_button_callback)

    st.caption("包含上下文次数:")
    st.slider("Context Level", 1, 10, st.session_state['context_level' + current_chat], 1, on_change=write_data,
              key='context_level' + current_chat, help="表示包含在每次会话中的历史对话次数,预设内容不计算在内。")

    st.caption("模型参数:")
    st.slider("Temperature", 0.0, 2.0, st.session_state["temperature" + current_chat], 0.1,
              help="""在0和2之间,应该使用什么样的采样温度?较高的值(如0.8)会使输出更随机,而较低的值(如0.2)则会使其更加集中和确定性。
              我们一般建议只更改这个参数或top_p参数中的一个,而不要同时更改两个。""",
              on_change=write_data, key='temperature' + current_chat)
    st.slider("Top P", 0.1, 1.0, st.session_state["top_p" + current_chat], 0.1,
              help="""一种替代采用温度进行采样的方法,称为“基于核心概率”的采样。在该方法中,模型会考虑概率最高的top_p个标记的预测结果。
              因此,当该参数为0.1时,只有包括前10%概率质量的标记将被考虑。我们一般建议只更改这个参数或采样温度参数中的一个,而不要同时更改两个。""",
              on_change=write_data, key='top_p' + current_chat)
    st.slider("Presence Penalty", -2.0, 2.0,
              st.session_state["presence_penalty" + current_chat], 0.1,
              help="""该参数的取值范围为-2.0到2.0。正值会根据新标记是否出现在当前生成的文本中对其进行惩罚,从而增加模型谈论新话题的可能性。""",
              on_change=write_data, key='presence_penalty' + current_chat)
    st.slider("Frequency Penalty", -2.0, 2.0,
              st.session_state["frequency_penalty" + current_chat], 0.1,
              help="""该参数的取值范围为-2.0到2.0。正值会根据新标记在当前生成的文本中的已有频率对其进行惩罚,从而减少模型直接重复相同语句的可能性。""",
              on_change=write_data, key='frequency_penalty' + current_chat)
    st.caption("[官网参数说明](https://platform.openai.com/docs/api-reference/completions/create)")

with tap_input:
    def get_history_input(history, level):
        df_history = pd.DataFrame(history)
        df_system = df_history.query('role=="system"')
        df_input = df_history.query('role!="system"')
        df_input = df_input[-level * 2:]
        res = pd.concat([df_system, df_input], ignore_index=True).to_dict('records')
        return res


    def extract_chars(text, num):
        char_num = 0
        chars = ''
        for char in text:
            # 汉字算两个字符
            if '\u4e00' <= char <= '\u9fff':
                char_num += 2
            else:
                char_num += 1
            chars += char
            if char_num >= num:
                break
        return chars


    def user_input_area_callback():
        # 清空输入框
        st.session_state['user_input_content'] = st.session_state['user_input_area']
        st.session_state['user_input_area'] = ''

        # 修改窗口名称
        user_input_content = st.session_state['user_input_content']
        df_history = pd.DataFrame(st.session_state["history" + current_chat])
        if len(df_history.query('role!="system"')) == 0:
            remove_data(current_chat)
            current_chat_index = st.session_state['history_chats'].index(current_chat)
            new_name = extract_chars(user_input_content, 18) + '_' + str(uuid.uuid4())
            st.session_state['history_chats'][current_chat_index] = new_name
            st.session_state["current_chat_index"] = current_chat_index
            # 写入新文件
            write_data(new_name)


    st.text_area("**输入:**", key="user_input_area", on_change=user_input_area_callback,
                 help="点击侧边栏标题可直接跳转此输入区   \n"
                      "此功能目前在Hugging Face不可用")
    if st.session_state['user_input_content'].strip() != '':
        st.session_state['pre_user_input_content'] = st.session_state['user_input_content']
        st.session_state['user_input_content'] = ''
        show_each_message(st.session_state['pre_user_input_content'], 'user',
                          [area_user_svg.markdown, area_user_content.markdown])
        history_tem = st.session_state["history" + current_chat] + \
                      [{"role": "user", "content": st.session_state['pre_user_input_content'].replace('\n', '\n\n')}]
        context_level_tem = st.session_state['context_level' + current_chat]
        history_need_input = ([{"role": "system",
                                "content": set_context_all[st.session_state['context_select' + current_chat]]}]
                              + [{"role": "system",
                                  "content": st.session_state['context_input' + current_chat]}]
                              + get_history_input(history_tem, context_level_tem))
        paras_need_input = {
            "temperature": st.session_state["temperature" + current_chat],
            "top_p": st.session_state["top_p" + current_chat],
            "presence_penalty": st.session_state["presence_penalty" + current_chat],
            "frequency_penalty": st.session_state["frequency_penalty" + current_chat],
        }
        with st.spinner("🤔"):
            try:
                openai.api_key = st.secrets["apikey"]
                r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=history_need_input, stream=True,
                                                 **paras_need_input)
            except (FileNotFoundError, KeyError):
                area_error.error("缺失 OpenAI API Key,请在st.secrets中完成配置。")
            except openai.error.AuthenticationError:
                area_error.error("无效的 OpenAI API Key。")
            except openai.error.APIConnectionError as e:
                area_error.error("连接超时,请重试。报错:   \n" + str(e.args[0]))
            except openai.error.InvalidRequestError as e:
                area_error.error("无效的请求,请重试。报错:   \n" + str(e.args[0]))
            except openai.error.RateLimitError as e:
                area_error.error("请求速率过快,请重试。报错:   \n" + str(e.args[0]))
            else:
                st.session_state["chat_of_r"] = current_chat
                st.session_state["r"] = r
                st.experimental_rerun()

if ("r" in st.session_state) and (current_chat == st.session_state["chat_of_r"]):
    if current_chat + 'report' not in st.session_state:
        st.session_state[current_chat + 'report'] = ""
    try:
        for e in st.session_state["r"]:
            if "content" in e["choices"][0]["delta"]:
                st.session_state[current_chat + 'report'] += e["choices"][0]["delta"]["content"]
                show_each_message(st.session_state['pre_user_input_content'], 'user',
                                  [area_user_svg.markdown, area_user_content.markdown])
                show_each_message(st.session_state[current_chat + 'report'], 'assistant',
                                  [area_gpt_svg.markdown, area_gpt_content.markdown])
    except ChunkedEncodingError:
        area_error.error("网络状况不佳,请刷新页面重试。")
    # 应对stop情形
    except Exception:
        pass
    else:
        # 保存内容
        st.session_state["history" + current_chat].append(
            {"role": "user", "content": st.session_state['pre_user_input_content']})
        st.session_state["history" + current_chat].append(
            {"role": "assistant", "content": st.session_state[current_chat + 'report']})
        write_data()

    # 用户在网页点击stop时,ss某些情形下会暂时为空
    if current_chat + 'report' in st.session_state:
        st.session_state.pop(current_chat + 'report')
    if 'r' in st.session_state:
        st.session_state.pop("r")