Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
from PIL import Image | |
import base64 | |
import io | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import requests | |
# Function to convert image to base64 | |
def image_to_base64(image: Image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
# Function to respond to input | |
def respond(message: str, image: Image): | |
# Convert image to base64 | |
image_base64 = image_to_base64(image) | |
# Initialize the Hugging Face client | |
client = InferenceClient("your_huggingface_model") | |
try: | |
# Call the text-to-image method | |
response_data = client.text_to_image(images=image_base64, prompt=message) | |
# Convert the response data (image) into a PIL Image | |
image_response = Image.open(io.BytesIO(response_data)) | |
# Format the response in the required 'messages' format | |
response_message = { | |
'role': 'assistant', # Assuming the response is from the assistant | |
'content': image_response | |
} | |
return response_message | |
except Exception as e: | |
return {"role": "assistant", "content": str(e)} | |
# Define the Gradio interface | |
def create_interface(): | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(type='messages') # 'messages' format for chatbot | |
message_input = gr.Textbox() | |
image_input = gr.Image(type='pil') # Image input as PIL image | |
# Define the interaction | |
message_input.submit(respond, inputs=[message_input, image_input], outputs=[chatbot]) | |
return demo | |
# Launch the interface | |
if __name__ == "__main__": | |
create_interface().launch(share=True) # Set share=True if you want to share the link publicly | |