IS_Demo / app.py
Pavankalyan's picture
added pretrained model
15c9fcc
raw
history blame
1.57 kB
import gradio as gr
from transformers import pipeline
import json
import os
import matplotlib.pyplot as plt
import IPython.display as ipd
import os
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
hps = utils.get_hparams_from_file("/ljs_base.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
_ = net_g.eval()
_ = utils.load_checkpoint("/pretrained_ljs.pth", net_g, None)
def transcribe(text):
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.cuda().unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
return hps.data.sampling_rate, audio
get_intent = gr.Interface(fn = transcribe,
inputs="textbox", outputs="audio").launch()