File size: 1,495 Bytes
15c9fcc
 
 
7bb68d5
15c9fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import json
import os
os.popen('sh run.sh')

import os
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader

import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence

from scipy.io.wavfile import write


def get_text(text, hps):
    text_norm = text_to_sequence(text, hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm

hps = utils.get_hparams_from_file("/ljs_base.json")

net_g = SynthesizerTrn(
    len(symbols),
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).cuda()
_ = net_g.eval()

_ = utils.load_checkpoint("/pretrained_ljs.pth", net_g, None)


def transcribe(text):
    stn_tst = get_text(text, hps)
    with torch.no_grad():
        x_tst = stn_tst.cuda().unsqueeze(0)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
        audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
    return hps.data.sampling_rate, audio

get_intent = gr.Interface(fn = transcribe,
                           inputs="textbox", outputs="audio").launch()