Spaces:
Runtime error
Runtime error
File size: 1,888 Bytes
17283b0 db5004d aa7bf0f 4e12acb a6bf372 db5004d 9b3d4f0 4c51458 9b3d4f0 a6bf372 576fbe3 a50b133 9b3d4f0 8e71032 9b3d4f0 4e12acb a98ef80 4e12acb a98ef80 4e12acb 4c51458 ddb6e98 db5004d 5ea36b0 17283b0 9b3d4f0 6ac65b5 9b3d4f0 652b4e4 238e381 656c99e a6bf372 17283b0 db373f8 17283b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from output_beautify import *
import pandas as pd
from load_data import *
import os
from gingerit import *
#os.system("pip install git+https://github.com/openai/whisper.git")
#import whisper
#model = whisper.load_model("small")
#current_size = 'small'
hf_writer = gr.HuggingFaceDatasetSaver('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', "Pavankalyan/chitti_data")
'''
def inference(audio):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
options = whisper.DecodingOptions(fp16 = False)
result = whisper.decode(model, mel, options)
return result.text
'''
def chitti(query):
re_table = search(query)
answers_re_table = [re_table[i][0] for i in range(0,5)]
answer_links = [re_table[i][3] for i in range(0,5)]
sorted_indices = sorted(range(len(answers_re_table)), key=lambda k: len(answers_re_table[k]))
repeated_answers_indices =list()
for i in range(4):
if answers_re_table[sorted_indices[i]] in answers_re_table[sorted_indices[i+1]]:
repeated_answers_indices.append(sorted_indices[i])
for idx in repeated_answers_indices:
answers_re_table.pop(idx)
answer_links.pop(idx)
#return [res1,answers_re_table[0],res2,answers_re_table[1]]
return [runGinger(answers_re_table[0]),answer_links[0],runGinger(answers_re_table[1]),answer_links[1]]
#return [re_table[0][0],re_table[0][3],re_table[1][0],re_table[1][3]]
demo = gr.Interface(
fn=chitti,
inputs=["text"],
#inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")],
outputs=["text","text","text","text"],
allow_flagging = "manual",
flagging_options = ["0","1","None"],
flagging_callback=hf_writer
)
demo.launch()
|