Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -60,11 +60,26 @@ def create_db(splits, collection_name):
|
|
60 |
|
61 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
62 |
progress(0.1, desc="Initializing HF tokenizer...")
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
progress(0.3, desc="Loading model...")
|
66 |
try:
|
67 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
68 |
except RuntimeError as e:
|
69 |
if "CUDA out of memory" in str(e):
|
70 |
raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.")
|
@@ -85,6 +100,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
85 |
eos_token_id=tokenizer.eos_token_id
|
86 |
)
|
87 |
llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
|
|
|
|
88 |
|
89 |
progress(0.75, desc="Defining buffer memory...")
|
90 |
memory = ConversationBufferMemory(
|
|
|
60 |
|
61 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
62 |
progress(0.1, desc="Initializing HF tokenizer...")
|
63 |
+
|
64 |
+
# Retrieve the Hugging Face token from environment variables
|
65 |
+
hf_token = os.environ.get("HF_TOKEN")
|
66 |
+
if not hf_token:
|
67 |
+
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
68 |
+
|
69 |
+
# Log in to Hugging Face
|
70 |
+
login(token=hf_token)
|
71 |
+
|
72 |
+
# Initialize tokenizer and model with the token
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model, use_auth_token=hf_token)
|
74 |
|
75 |
progress(0.3, desc="Loading model...")
|
76 |
try:
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
llm_model,
|
79 |
+
use_auth_token=hf_token,
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
device_map="auto"
|
82 |
+
)
|
83 |
except RuntimeError as e:
|
84 |
if "CUDA out of memory" in str(e):
|
85 |
raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.")
|
|
|
100 |
eos_token_id=tokenizer.eos_token_id
|
101 |
)
|
102 |
llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
103 |
+
|
104 |
+
|
105 |
|
106 |
progress(0.75, desc="Defining buffer memory...")
|
107 |
memory = ConversationBufferMemory(
|