File size: 16,599 Bytes
4a582ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
import time

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddleseg
from paddleseg.models import layers
from paddleseg import utils
from paddleseg.cvlibs import manager

from ppmatting.models.losses import MRSD


def conv_up_psp(in_channels, out_channels, up_sample):
    return nn.Sequential(
        layers.ConvBNReLU(
            in_channels, out_channels, 3, padding=1),
        nn.Upsample(
            scale_factor=up_sample, mode='bilinear', align_corners=False))


@manager.MODELS.add_component
class HumanMatting(nn.Layer):
    """A model for """

    def __init__(self,
                 backbone,
                 pretrained=None,
                 backbone_scale=0.25,
                 refine_kernel_size=3,
                 if_refine=True):
        super().__init__()
        if if_refine:
            if backbone_scale > 0.5:
                raise ValueError(
                    'Backbone_scale should not be greater than 1/2, but it is {}'
                    .format(backbone_scale))
        else:
            backbone_scale = 1

        self.backbone = backbone
        self.backbone_scale = backbone_scale
        self.pretrained = pretrained
        self.if_refine = if_refine
        if if_refine:
            self.refiner = Refiner(kernel_size=refine_kernel_size)
        self.loss_func_dict = None

        self.backbone_channels = backbone.feat_channels
        ######################
        ### Decoder part - Glance
        ######################
        self.psp_module = layers.PPModule(
            self.backbone_channels[-1],
            512,
            bin_sizes=(1, 3, 5),
            dim_reduction=False,
            align_corners=False)
        self.psp4 = conv_up_psp(512, 256, 2)
        self.psp3 = conv_up_psp(512, 128, 4)
        self.psp2 = conv_up_psp(512, 64, 8)
        self.psp1 = conv_up_psp(512, 64, 16)
        # stage 5g
        self.decoder5_g = nn.Sequential(
            layers.ConvBNReLU(
                512 + self.backbone_channels[-1], 512, 3, padding=1),
            layers.ConvBNReLU(
                512, 512, 3, padding=2, dilation=2),
            layers.ConvBNReLU(
                512, 256, 3, padding=2, dilation=2),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 4g
        self.decoder4_g = nn.Sequential(
            layers.ConvBNReLU(
                512, 256, 3, padding=1),
            layers.ConvBNReLU(
                256, 256, 3, padding=1),
            layers.ConvBNReLU(
                256, 128, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 3g
        self.decoder3_g = nn.Sequential(
            layers.ConvBNReLU(
                256, 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 64, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 2g
        self.decoder2_g = nn.Sequential(
            layers.ConvBNReLU(
                128, 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 64, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 1g
        self.decoder1_g = nn.Sequential(
            layers.ConvBNReLU(
                128, 64, 3, padding=1),
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 0g
        self.decoder0_g = nn.Sequential(
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            nn.Conv2D(
                64, 3, 3, padding=1))

        ##########################
        ### Decoder part - FOCUS
        ##########################
        self.bridge_block = nn.Sequential(
            layers.ConvBNReLU(
                self.backbone_channels[-1], 512, 3, dilation=2, padding=2),
            layers.ConvBNReLU(
                512, 512, 3, dilation=2, padding=2),
            layers.ConvBNReLU(
                512, 512, 3, dilation=2, padding=2))
        # stage 5f
        self.decoder5_f = nn.Sequential(
            layers.ConvBNReLU(
                512 + self.backbone_channels[-1], 512, 3, padding=1),
            layers.ConvBNReLU(
                512, 512, 3, padding=2, dilation=2),
            layers.ConvBNReLU(
                512, 256, 3, padding=2, dilation=2),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 4f
        self.decoder4_f = nn.Sequential(
            layers.ConvBNReLU(
                256 + self.backbone_channels[-2], 256, 3, padding=1),
            layers.ConvBNReLU(
                256, 256, 3, padding=1),
            layers.ConvBNReLU(
                256, 128, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 3f
        self.decoder3_f = nn.Sequential(
            layers.ConvBNReLU(
                128 + self.backbone_channels[-3], 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 64, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 2f
        self.decoder2_f = nn.Sequential(
            layers.ConvBNReLU(
                64 + self.backbone_channels[-4], 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 128, 3, padding=1),
            layers.ConvBNReLU(
                128, 64, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 1f
        self.decoder1_f = nn.Sequential(
            layers.ConvBNReLU(
                64 + self.backbone_channels[-5], 64, 3, padding=1),
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            nn.Upsample(
                scale_factor=2, mode='bilinear', align_corners=False))
        # stage 0f
        self.decoder0_f = nn.Sequential(
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            layers.ConvBNReLU(
                64, 64, 3, padding=1),
            nn.Conv2D(
                64, 1 + 1 + 32, 3, padding=1))
        self.init_weight()

    def forward(self, data):
        src = data['img']
        src_h, src_w = paddle.shape(src)[2:]
        if self.if_refine:
            # It is not need when exporting.
            if isinstance(src_h, paddle.Tensor):
                if (src_h % 4 != 0) or (src_w % 4) != 0:
                    raise ValueError(
                        'The input image must have width and height that are divisible by 4'
                    )

        # Downsample src for backbone
        src_sm = F.interpolate(
            src,
            scale_factor=self.backbone_scale,
            mode='bilinear',
            align_corners=False)

        # Base
        fea_list = self.backbone(src_sm)
        ##########################
        ### Decoder part - GLANCE
        ##########################
        #psp: N, 512, H/32, W/32
        psp = self.psp_module(fea_list[-1])
        #d6_g: N, 512, H/16, W/16
        d5_g = self.decoder5_g(paddle.concat((psp, fea_list[-1]), 1))
        #d5_g: N, 512, H/8, W/8
        d4_g = self.decoder4_g(paddle.concat((self.psp4(psp), d5_g), 1))
        #d4_g: N, 256, H/4, W/4
        d3_g = self.decoder3_g(paddle.concat((self.psp3(psp), d4_g), 1))
        #d4_g: N, 128, H/2, W/2
        d2_g = self.decoder2_g(paddle.concat((self.psp2(psp), d3_g), 1))
        #d2_g: N, 64, H, W
        d1_g = self.decoder1_g(paddle.concat((self.psp1(psp), d2_g), 1))
        #d0_g: N, 3, H, W
        d0_g = self.decoder0_g(d1_g)
        # The 1st channel is foreground. The 2nd is transition region. The 3rd is background.
        # glance_sigmoid = F.sigmoid(d0_g)
        glance_sigmoid = F.softmax(d0_g, axis=1)

        ##########################
        ### Decoder part - FOCUS
        ##########################
        bb = self.bridge_block(fea_list[-1])
        #bg: N, 512, H/32, W/32
        d5_f = self.decoder5_f(paddle.concat((bb, fea_list[-1]), 1))
        #d5_f: N, 256, H/16, W/16
        d4_f = self.decoder4_f(paddle.concat((d5_f, fea_list[-2]), 1))
        #d4_f: N, 128, H/8, W/8
        d3_f = self.decoder3_f(paddle.concat((d4_f, fea_list[-3]), 1))
        #d3_f: N, 64, H/4, W/4
        d2_f = self.decoder2_f(paddle.concat((d3_f, fea_list[-4]), 1))
        #d2_f: N, 64, H/2, W/2
        d1_f = self.decoder1_f(paddle.concat((d2_f, fea_list[-5]), 1))
        #d1_f: N, 64, H, W
        d0_f = self.decoder0_f(d1_f)
        #d0_f: N, 1, H, W
        focus_sigmoid = F.sigmoid(d0_f[:, 0:1, :, :])
        pha_sm = self.fusion(glance_sigmoid, focus_sigmoid)
        err_sm = d0_f[:, 1:2, :, :]
        err_sm = paddle.clip(err_sm, 0., 1.)
        hid_sm = F.relu(d0_f[:, 2:, :, :])

        # Refiner
        if self.if_refine:
            pha = self.refiner(
                src=src, pha=pha_sm, err=err_sm, hid=hid_sm, tri=glance_sigmoid)
            # Clamp outputs
            pha = paddle.clip(pha, 0., 1.)

        if self.training:
            logit_dict = {
                'glance': glance_sigmoid,
                'focus': focus_sigmoid,
                'fusion': pha_sm,
                'error': err_sm
            }
            if self.if_refine:
                logit_dict['refine'] = pha
            loss_dict = self.loss(logit_dict, data)
            return logit_dict, loss_dict
        else:
            return pha if self.if_refine else pha_sm

    def loss(self, logit_dict, label_dict, loss_func_dict=None):
        if loss_func_dict is None:
            if self.loss_func_dict is None:
                self.loss_func_dict = defaultdict(list)
                self.loss_func_dict['glance'].append(nn.NLLLoss())
                self.loss_func_dict['focus'].append(MRSD())
                self.loss_func_dict['cm'].append(MRSD())
                self.loss_func_dict['err'].append(paddleseg.models.MSELoss())
                self.loss_func_dict['refine'].append(paddleseg.models.L1Loss())
        else:
            self.loss_func_dict = loss_func_dict

        loss = {}

        # glance loss computation
        # get glance label
        glance_label = F.interpolate(
            label_dict['trimap'],
            logit_dict['glance'].shape[2:],
            mode='nearest',
            align_corners=False)
        glance_label_trans = (glance_label == 128).astype('int64')
        glance_label_bg = (glance_label == 0).astype('int64')
        glance_label = glance_label_trans + glance_label_bg * 2
        loss_glance = self.loss_func_dict['glance'][0](
            paddle.log(logit_dict['glance'] + 1e-6), glance_label.squeeze(1))
        loss['glance'] = loss_glance

        # focus loss computation
        focus_label = F.interpolate(
            label_dict['alpha'],
            logit_dict['focus'].shape[2:],
            mode='bilinear',
            align_corners=False)
        loss_focus = self.loss_func_dict['focus'][0](
            logit_dict['focus'], focus_label, glance_label_trans)
        loss['focus'] = loss_focus

        # collaborative matting loss
        loss_cm_func = self.loss_func_dict['cm']
        # fusion_sigmoid loss
        loss_cm = loss_cm_func[0](logit_dict['fusion'], focus_label)
        loss['cm'] = loss_cm

        # error loss
        err = F.interpolate(
            logit_dict['error'],
            label_dict['alpha'].shape[2:],
            mode='bilinear',
            align_corners=False)
        err_label = (F.interpolate(
            logit_dict['fusion'],
            label_dict['alpha'].shape[2:],
            mode='bilinear',
            align_corners=False) - label_dict['alpha']).abs()
        loss_err = self.loss_func_dict['err'][0](err, err_label)
        loss['err'] = loss_err

        loss_all = 0.25 * loss_glance + 0.25 * loss_focus + 0.25 * loss_cm + loss_err

        # refine loss
        if self.if_refine:
            loss_refine = self.loss_func_dict['refine'][0](logit_dict['refine'],
                                                           label_dict['alpha'])
            loss['refine'] = loss_refine
            loss_all = loss_all + loss_refine

        loss['all'] = loss_all
        return loss

    def fusion(self, glance_sigmoid, focus_sigmoid):
        # glance_sigmoid [N, 3, H, W].
        # In index, 0 is foreground, 1 is transition, 2 is backbone.
        # After fusion, the foreground is 1, the background is 0, and the transion is between (0, 1).
        index = paddle.argmax(glance_sigmoid, axis=1, keepdim=True)
        transition_mask = (index == 1).astype('float32')
        fg = (index == 0).astype('float32')
        fusion_sigmoid = focus_sigmoid * transition_mask + fg
        return fusion_sigmoid

    def init_weight(self):
        if self.pretrained is not None:
            utils.load_entire_model(self, self.pretrained)


class Refiner(nn.Layer):
    '''
    Refiner refines the coarse output to full resolution.

    Args:
        kernel_size: The convolution kernel_size. Options: [1, 3]. Default: 3.
    '''

    def __init__(self, kernel_size=3):
        super().__init__()
        if kernel_size not in [1, 3]:
            raise ValueError("kernel_size must be in [1, 3]")

        self.kernel_size = kernel_size

        channels = [32, 24, 16, 12, 1]
        self.conv1 = layers.ConvBNReLU(
            channels[0] + 4 + 3,
            channels[1],
            kernel_size,
            padding=0,
            bias_attr=False)
        self.conv2 = layers.ConvBNReLU(
            channels[1], channels[2], kernel_size, padding=0, bias_attr=False)
        self.conv3 = layers.ConvBNReLU(
            channels[2] + 3,
            channels[3],
            kernel_size,
            padding=0,
            bias_attr=False)
        self.conv4 = nn.Conv2D(
            channels[3], channels[4], kernel_size, padding=0, bias_attr=True)

    def forward(self, src, pha, err, hid, tri):
        '''
        Args:
            src: (B, 3, H, W) full resolution source image.
            pha: (B, 1, Hc, Wc) coarse alpha prediction.
            err: (B, 1, Hc, Hc) coarse error prediction.
            hid: (B, 32, Hc, Hc) coarse hidden encoding.
            tri: (B, 1, Hc, Hc) trimap prediction.
        '''
        h_full, w_full = paddle.shape(src)[2:]
        h_half, w_half = h_full // 2, w_full // 2
        h_quat, w_quat = h_full // 4, w_full // 4

        x = paddle.concat([hid, pha, tri], axis=1)
        x = F.interpolate(
            x,
            paddle.concat((h_half, w_half)),
            mode='bilinear',
            align_corners=False)
        y = F.interpolate(
            src,
            paddle.concat((h_half, w_half)),
            mode='bilinear',
            align_corners=False)

        if self.kernel_size == 3:
            x = F.pad(x, [3, 3, 3, 3])
            y = F.pad(y, [3, 3, 3, 3])

        x = self.conv1(paddle.concat([x, y], axis=1))
        x = self.conv2(x)

        if self.kernel_size == 3:
            x = F.interpolate(x, paddle.concat((h_full + 4, w_full + 4)))
            y = F.pad(src, [2, 2, 2, 2])
        else:
            x = F.interpolate(
                x, paddle.concat((h_full, w_full)), mode='nearest')
            y = src

        x = self.conv3(paddle.concat([x, y], axis=1))
        x = self.conv4(x)

        pha = x
        return pha