Paul-Joshi commited on
Commit
d364fe2
1 Parent(s): eb780ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -20
app.py CHANGED
@@ -77,32 +77,18 @@ def main():
77
 
78
  else:
79
  # Input fields
80
- st.markdown("*Your are gonna interact with the below Website:*")
81
- st.info("Click on the Start button")
82
-
83
- # Button to pre-process input
84
- if st.button("Start"):
85
- with st.spinner('Tokenizing and Embedding the Website Data'):
86
  # get pdf text
87
  raw_text = method_get_website_text(website_url)
88
  # get the text chunks
89
  doc_splits = method_get_text_chunks(raw_text)
90
  # create vector store
91
  vector_store = method_get_vectorstore(doc_splits)
92
-
93
- # Input fields
94
- question = st.text_input("Question")
95
-
96
- # Button to process input and get output
97
- if st.button('Query Documents'):
98
- with st.spinner('Processing...'):
99
- # # get pdf text
100
- # raw_text = method_get_website_text(website_url)
101
- # # get the text chunks
102
- # doc_splits = method_get_text_chunks(raw_text)
103
- # # create vector store
104
- # vector_store = method_get_vectorstore(doc_splits)
105
- # Generate response using the RAG pipeline
106
  answer = get_context_retriever_chain(vector_store,question)
107
  # Display the generated answer
108
  split_string = "Question: " + str(question)
 
77
 
78
  else:
79
  # Input fields
80
+ question = st.text_input("Question")
81
+
82
+ # Button to process input and get output
83
+ if st.button('Query Documents'):
84
+ with st.spinner('Processing...'):
 
85
  # get pdf text
86
  raw_text = method_get_website_text(website_url)
87
  # get the text chunks
88
  doc_splits = method_get_text_chunks(raw_text)
89
  # create vector store
90
  vector_store = method_get_vectorstore(doc_splits)
91
+ Generate response using the RAG pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  answer = get_context_retriever_chain(vector_store,question)
93
  # Display the generated answer
94
  split_string = "Question: " + str(question)