Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -31,12 +31,9 @@ def method_get_text_chunks(text):
|
|
31 |
return doc_splits
|
32 |
|
33 |
#convert text chunks into embeddings and store in vector database
|
34 |
-
def method_get_vectorstore(document_chunks
|
35 |
-
|
36 |
-
|
37 |
-
embeddings = HuggingFaceEmbeddings()
|
38 |
-
else:
|
39 |
-
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
|
40 |
|
41 |
# create a vectorstore from the chunks
|
42 |
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
@@ -77,33 +74,40 @@ def main():
|
|
77 |
with st.sidebar:
|
78 |
st.header("Settings")
|
79 |
website_url = st.text_input("Website URL")
|
80 |
-
nomic_apikey = st.text_input("NOMIC API Key for Embeddings")
|
81 |
|
82 |
if website_url is None or website_url == "":
|
83 |
st.info("Please enter a website URL")
|
84 |
|
85 |
else:
|
86 |
# Input fields
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
nomic_apikey = None
|
95 |
-
else:
|
96 |
-
# Set the environment variable
|
97 |
-
os.environ['NOMIC_API_KEY'] = nomic_apikey
|
98 |
# get pdf text
|
99 |
raw_text = method_get_website_text(website_url)
|
100 |
# get the text chunks
|
101 |
doc_splits = method_get_text_chunks(raw_text)
|
102 |
-
#access the environment variable
|
103 |
-
nomic_apikey = os.environ['NOMIC_API_KEY']
|
104 |
# create vector store
|
105 |
-
vector_store = method_get_vectorstore(doc_splits
|
106 |
# Generate response using the RAG pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
answer = get_context_retriever_chain(vector_store,question)
|
108 |
# Display the generated answer
|
109 |
split_string = "Question: " + str(question)
|
|
|
31 |
return doc_splits
|
32 |
|
33 |
#convert text chunks into embeddings and store in vector database
|
34 |
+
def method_get_vectorstore(document_chunks):
|
35 |
+
embeddings = HuggingFaceEmbeddings()
|
36 |
+
#embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
|
|
|
|
|
|
|
37 |
|
38 |
# create a vectorstore from the chunks
|
39 |
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
|
|
74 |
with st.sidebar:
|
75 |
st.header("Settings")
|
76 |
website_url = st.text_input("Website URL")
|
|
|
77 |
|
78 |
if website_url is None or website_url == "":
|
79 |
st.info("Please enter a website URL")
|
80 |
|
81 |
else:
|
82 |
# Input fields
|
83 |
+
st.subheader('Your are gonna interact with the below Website:')
|
84 |
+
st.button("Start", type="primary")
|
85 |
+
st.subheader('Click on the Start button', divider='rainbow')
|
86 |
+
|
87 |
+
# Button to pre-process input
|
88 |
+
if st.button("Reset"):
|
89 |
+
with st.spinner('Tokenizing and Embedding the Website Data'):
|
|
|
|
|
|
|
|
|
90 |
# get pdf text
|
91 |
raw_text = method_get_website_text(website_url)
|
92 |
# get the text chunks
|
93 |
doc_splits = method_get_text_chunks(raw_text)
|
|
|
|
|
94 |
# create vector store
|
95 |
+
vector_store = method_get_vectorstore(doc_splits)
|
96 |
# Generate response using the RAG pipeline
|
97 |
+
|
98 |
+
# Input fields
|
99 |
+
question = st.text_input("Question")
|
100 |
+
|
101 |
+
# Button to process input and get output
|
102 |
+
if st.button('Query Documents'):
|
103 |
+
with st.spinner('Processing...'):
|
104 |
+
# # get pdf text
|
105 |
+
# raw_text = method_get_website_text(website_url)
|
106 |
+
# # get the text chunks
|
107 |
+
# doc_splits = method_get_text_chunks(raw_text)
|
108 |
+
# # create vector store
|
109 |
+
# vector_store = method_get_vectorstore(doc_splits)
|
110 |
+
# # Generate response using the RAG pipeline
|
111 |
answer = get_context_retriever_chain(vector_store,question)
|
112 |
# Display the generated answer
|
113 |
split_string = "Question: " + str(question)
|