Spaces:
Runtime error
Runtime error
Paul-Joshi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -37,7 +37,7 @@ def method_get_vectorstore(document_chunks):
|
|
37 |
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
38 |
return vector_store
|
39 |
|
40 |
-
def get_context_retriever_chain(vector_store,question):
|
41 |
# Initialize the retriever
|
42 |
retriever = vector_store.as_retriever()
|
43 |
|
@@ -55,13 +55,40 @@ def get_context_retriever_chain(vector_store,question):
|
|
55 |
|
56 |
# Construct the RAG pipeline
|
57 |
after_rag_chain = (
|
58 |
-
{"context": retriever, "question":
|
59 |
| after_rag_prompt
|
60 |
| llm
|
61 |
| StrOutputParser()
|
62 |
)
|
63 |
|
|
|
64 |
return after_rag_chain.invoke(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def main():
|
67 |
st.set_page_config(page_title="Chat with websites", page_icon="🤖")
|
|
|
37 |
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
38 |
return vector_store
|
39 |
|
40 |
+
def get_context_retriever_chain(vector_store, question):
|
41 |
# Initialize the retriever
|
42 |
retriever = vector_store.as_retriever()
|
43 |
|
|
|
55 |
|
56 |
# Construct the RAG pipeline
|
57 |
after_rag_chain = (
|
58 |
+
{"context": retriever, "question": question}
|
59 |
| after_rag_prompt
|
60 |
| llm
|
61 |
| StrOutputParser()
|
62 |
)
|
63 |
|
64 |
+
# Invoke the RAG pipeline and return the generated answer
|
65 |
return after_rag_chain.invoke(question)
|
66 |
+
|
67 |
+
# def get_context_retriever_chain(vector_store,question):
|
68 |
+
# # Initialize the retriever
|
69 |
+
# retriever = vector_store.as_retriever()
|
70 |
+
|
71 |
+
# # Define the RAG template
|
72 |
+
# after_rag_template = """Answer the question based only on the following context:
|
73 |
+
# {context}
|
74 |
+
# Question: {question}
|
75 |
+
# """
|
76 |
+
|
77 |
+
# # Create the RAG prompt template
|
78 |
+
# after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template)
|
79 |
+
|
80 |
+
# # Initialize the Hugging Face language model (LLM)
|
81 |
+
# llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.2")
|
82 |
+
|
83 |
+
# # Construct the RAG pipeline
|
84 |
+
# after_rag_chain = (
|
85 |
+
# {"context": retriever, "question": RunnablePassthrough()}
|
86 |
+
# | after_rag_prompt
|
87 |
+
# | llm
|
88 |
+
# | StrOutputParser()
|
89 |
+
# )
|
90 |
+
|
91 |
+
# return after_rag_chain.invoke(question)
|
92 |
|
93 |
def main():
|
94 |
st.set_page_config(page_title="Chat with websites", page_icon="🤖")
|