Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,23 +26,11 @@ def method_get_text_chunks(text):
|
|
26 |
#split the text into chunks
|
27 |
|
28 |
#text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100)
|
29 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
30 |
doc_splits = text_splitter.split_documents(text)
|
31 |
return doc_splits
|
32 |
-
|
33 |
-
|
34 |
-
def method_get_vectorstore(document_chunks):
|
35 |
-
#convert text chunks into embeddings and store in vector database
|
36 |
-
|
37 |
-
# create the open-source embedding function
|
38 |
-
#embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
|
39 |
-
embeddings = HuggingFaceEmbeddings()
|
40 |
-
|
41 |
-
# create a vectorstore from the chunks
|
42 |
-
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
43 |
-
return vector_store
|
44 |
-
|
45 |
-
def get_context_retriever_chain(vector_store, question):
|
46 |
# Initialize the retriever
|
47 |
retriever = vector_store.as_retriever()
|
48 |
|
@@ -60,40 +48,13 @@ def get_context_retriever_chain(vector_store, question):
|
|
60 |
|
61 |
# Construct the RAG pipeline
|
62 |
after_rag_chain = (
|
63 |
-
{"context": retriever, "question":
|
64 |
| after_rag_prompt
|
65 |
| llm
|
66 |
| StrOutputParser()
|
67 |
)
|
68 |
|
69 |
-
# Invoke the RAG pipeline and return the generated answer
|
70 |
return after_rag_chain.invoke(question)
|
71 |
-
|
72 |
-
# def get_context_retriever_chain(vector_store,question):
|
73 |
-
# # Initialize the retriever
|
74 |
-
# retriever = vector_store.as_retriever()
|
75 |
-
|
76 |
-
# # Define the RAG template
|
77 |
-
# after_rag_template = """Answer the question based only on the following context:
|
78 |
-
# {context}
|
79 |
-
# Question: {question}
|
80 |
-
# """
|
81 |
-
|
82 |
-
# # Create the RAG prompt template
|
83 |
-
# after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template)
|
84 |
-
|
85 |
-
# # Initialize the Hugging Face language model (LLM)
|
86 |
-
# llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.2")
|
87 |
-
|
88 |
-
# # Construct the RAG pipeline
|
89 |
-
# after_rag_chain = (
|
90 |
-
# {"context": retriever, "question": RunnablePassthrough()}
|
91 |
-
# | after_rag_prompt
|
92 |
-
# | llm
|
93 |
-
# | StrOutputParser()
|
94 |
-
# )
|
95 |
-
|
96 |
-
# return after_rag_chain.invoke(question)
|
97 |
|
98 |
def main():
|
99 |
st.set_page_config(page_title="Chat with websites", page_icon="🤖")
|
|
|
26 |
#split the text into chunks
|
27 |
|
28 |
#text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100)
|
29 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
30 |
doc_splits = text_splitter.split_documents(text)
|
31 |
return doc_splits
|
32 |
+
|
33 |
+
def get_context_retriever_chain(vector_store,question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize the retriever
|
35 |
retriever = vector_store.as_retriever()
|
36 |
|
|
|
48 |
|
49 |
# Construct the RAG pipeline
|
50 |
after_rag_chain = (
|
51 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
52 |
| after_rag_prompt
|
53 |
| llm
|
54 |
| StrOutputParser()
|
55 |
)
|
56 |
|
|
|
57 |
return after_rag_chain.invoke(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def main():
|
60 |
st.set_page_config(page_title="Chat with websites", page_icon="🤖")
|