Paul-Joshi's picture
Create app.py
a00136a verified
raw
history blame
3.6 kB
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from css_template import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
import os
# os.environ['FAISS_NO_AVX2'] = '1'
def method_get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def method_get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len,
is_separator_regex=False,
)
chunks = text_splitter.split_text(text)
return chunks
def method_get_vectorstore(text_chunks):
# embeddings = OpenAIEmbeddings()
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def method_get_conversation_chain(vectorstore):
#llm = ChatOpenAI()
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def method_handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Converse with multiple PDFs",page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Converse with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
method_handle_userinput(user_question)
with st.sidebar:
st.subheader("Documents Upload")
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Submit'", accept_multiple_files=True)
if st.button("Submit"):
with st.spinner("Processing"):
# get pdf text
raw_text = method_get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = method_get_text_chunks(raw_text)
# create vector store
vectorstore = method_get_vectorstore(text_chunks)
st.write(text_chunks)
# create conversation chain
st.session_state.conversation = method_get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()