Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from css_template import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
import os | |
# os.environ['FAISS_NO_AVX2'] = '1' | |
def method_get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def method_get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len, | |
is_separator_regex=False, | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def method_get_vectorstore(text_chunks): | |
# embeddings = OpenAIEmbeddings() | |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def method_get_conversation_chain(vectorstore): | |
#llm = ChatOpenAI() | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def method_handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Converse with multiple PDFs",page_icon=":books:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Converse with multiple PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
method_handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Documents Upload") | |
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Submit'", accept_multiple_files=True) | |
if st.button("Submit"): | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = method_get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = method_get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = method_get_vectorstore(text_chunks) | |
st.write(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = method_get_conversation_chain(vectorstore) | |
if __name__ == '__main__': | |
main() |