Update app.py
Browse files
app.py
CHANGED
@@ -3,54 +3,51 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
from prophet import Prophet
|
5 |
from mysql import connector
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
p_df = df.rename(columns={'Date_time':'ds',str(name):'y'})
|
18 |
-
rain_df = p_df[p_df['mode']=='Rain'][['ds','y']]
|
19 |
-
rain_model = Prophet(interval_width=0.95)
|
20 |
-
rain_model.fit(rain_df)
|
21 |
-
date_time = pd.Series(pd.to_datetime(f'{Year}-{Month}-{Date}',format = '%Y-%m-%d'),name='ds')
|
22 |
-
date_time = pd.DataFrame(date_time)
|
23 |
-
forecast = rain_model.predict(date_time)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
if float(forecast['yhat'][0]) >= 6:
|
27 |
-
WeatherCon = 'SUNNY'
|
28 |
-
txt = 'น้อย'
|
29 |
-
else:
|
30 |
-
WeatherCon = 'RAIN'
|
31 |
-
txt = 'สูง'
|
32 |
-
if Activity == 'Indoor':
|
33 |
-
IsIndoor = 'Y'
|
34 |
-
else:
|
35 |
-
IsIndoor = 'N'
|
36 |
-
|
37 |
-
place = place_df[place_df['Purpose']==Purpose]
|
38 |
-
place = place[place['IsIndoor']==IsIndoor]
|
39 |
-
place = place[place['Province']==Province]
|
40 |
-
if WeatherCon != 'SUNNY':
|
41 |
-
place = place[place['WeatherCon']==WeatherCon]
|
42 |
-
place = place['LocationName']
|
43 |
-
#random = random.randrange(len(place))
|
44 |
-
place = list(place)[0]
|
45 |
-
return f'มีโอกาสฝนตก{txt} สถานที่ที่แนะนำคือ: {place}'
|
46 |
|
|
|
|
|
|
|
47 |
|
48 |
iface = gr.Interface(
|
49 |
fn = get_weather_forecast,
|
50 |
inputs = [
|
51 |
|
52 |
gr.Dropdown(
|
53 |
-
["Bangkok"], label="Province", info="Will add more later!"
|
54 |
),
|
55 |
|
56 |
gr.Dropdown(
|
@@ -58,11 +55,11 @@ iface = gr.Interface(
|
|
58 |
),
|
59 |
|
60 |
gr.Dropdown(
|
61 |
-
["
|
62 |
),
|
63 |
|
64 |
gr.Dropdown(
|
65 |
-
[
|
66 |
),
|
67 |
|
68 |
gr.Dropdown(
|
|
|
3 |
import numpy as np
|
4 |
from prophet import Prophet
|
5 |
from mysql import connector
|
6 |
+
import json
|
7 |
+
from prophet.serialize import model_from_json
|
8 |
|
9 |
+
province_dict = {
|
10 |
+
"Bangkok":"กรุงเทพฯ",
|
11 |
+
'Nakohn Pathom':'นครปฐม',
|
12 |
+
'Pathum Thani':'ปทุมธานี',
|
13 |
+
'Nakohn Nayok':'นครนายก',
|
14 |
+
'Nonthaburi':'นนทบุรี',
|
15 |
+
'Samut Songkhram':'สมุทรสงคราม'
|
16 |
+
}
|
17 |
|
18 |
|
19 |
|
20 |
+
def weather_forcast(year,month,date):
|
21 |
+
_date = pd.to_datetime(f'{year}-{month}-{date}')
|
22 |
+
|
23 |
+
_df = pd.DataFrame({'ds':[_date]})
|
24 |
+
|
25 |
+
_prediction = _model.predict(_df)
|
26 |
+
_prediction = _prediction['yhat']
|
27 |
|
28 |
+
_israin = False if(_prediction<0.5) else True
|
29 |
+
return _israin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def get_advice(province,activity,purpose,year,month,date):
|
32 |
+
_province = province_dict[province]
|
33 |
+
with open('prophet_model.json', 'r') as fin:
|
34 |
+
_model = model_from_json(json.load(fin)
|
35 |
+
_purpose = purpose.lower()
|
36 |
+
_day = pd.to_datetime(f'{year}-{month}-{date}').day_name()
|
37 |
+
_activity = 'indoor' if(weather_forcast(year,month,date)) else activity.lower()
|
38 |
+
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
return f'มีโอกาสฝนตก{txt} สถานที่ที่แนะนำคือ: {place}'
|
42 |
+
|
43 |
+
|
44 |
|
45 |
iface = gr.Interface(
|
46 |
fn = get_weather_forecast,
|
47 |
inputs = [
|
48 |
|
49 |
gr.Dropdown(
|
50 |
+
["Bangkok",'Nakohn Pathom','Pathum Thani','Nakohn Nayok','Nonthaburi','Samut Songkhram'], label="Province", info="Will add more later!"
|
51 |
),
|
52 |
|
53 |
gr.Dropdown(
|
|
|
55 |
),
|
56 |
|
57 |
gr.Dropdown(
|
58 |
+
["Shopping","Relax",'Education','Culture','Nature'], label="Purpose"
|
59 |
),
|
60 |
|
61 |
gr.Dropdown(
|
62 |
+
[2024], label="Year", info="Will add more later!"
|
63 |
),
|
64 |
|
65 |
gr.Dropdown(
|