|
import streamlit as st |
|
import numpy as np |
|
from PIL import Image |
|
import cv2 |
|
import tensorflow as tf |
|
|
|
|
|
|
|
|
|
st.title("Hello Parimal") |
|
|
|
def data_preprocessing(img): |
|
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|
img = np.resize(img, [1, 28, 28]) |
|
img = img/255 |
|
return img |
|
|
|
image = st.file_uploader("Upload files", type=["jpeg", "png", "jpg", "webp"]) |
|
model = tf.keras.models.load_model("mnist.h5") |
|
|
|
if image is not None: |
|
img = Image.open(image) |
|
img = np.array(img) |
|
st.image(img, caption="Uploaded Image", use_column_width=True) |
|
images = data_preprocessing(img) |
|
predictions = model.predict(images) |
|
predictions = np.argmax(predictions) |
|
st.write(f"The Predicted Value: {predictions}") |
|
|
|
|
|
|
|
|
|
|
|
|