File size: 3,526 Bytes
3129503
 
 
 
 
 
 
 
 
 
0e8d01c
 
3129503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33701df
 
 
 
3129503
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import random
import panel as pn
import requests
from PIL import Image

from transformers import CLIPProcessor, CLIPModel
from typing import List, Tuple


def set_random_url(_):
    pet = random.choice(["cat", "dog"])
    api_url = f"https://api.the{pet}api.com/v1/images/search"
    with requests.get(api_url) as resp:
        resp.raise_for_status()
        url = resp.json()[0]["url"]
    image_url.value = url


@pn.cache
def load_processor_model(
    processor_name: str, model_name: str
) -> Tuple[CLIPProcessor, CLIPModel]:
    processor = CLIPProcessor.from_pretrained(processor_name)
    model = CLIPModel.from_pretrained(model_name)
    return processor, model


@pn.cache
def open_image_url(image_url: str) -> Image:
    with requests.get(image_url, stream=True) as resp:
        resp.raise_for_status()
        image = Image.open(resp.raw)
    return image


def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
    processor, model = load_processor_model(
        "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
    )
    inputs = processor(
        text=class_items,
        images=[image],
        return_tensors="pt",  # pytorch tensors
    )
    outputs = model(**inputs)
    logits_per_image = outputs.logits_per_image
    class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
    return class_likelihoods[0]


def process_inputs(class_names: List[str], image_url: str):
    """
    High level function that takes in the user inputs and returns the
    classification results as panel objects.
    """
    image = open_image_url(image_url)
    class_items = class_names.split(",")
    class_likelihoods = get_similarity_scores(class_items, image)

    # build the results column
    results_column = pn.Column("## πŸŽ‰ Here are the results!")

    results_column.append(
        pn.pane.Image(image, max_width=698, sizing_mode="scale_width")
    )

    for class_item, class_likelihood in zip(class_items, class_likelihoods):
        row_label = pn.widgets.StaticText(
            name=class_item.strip(), value=f"{class_likelihood:.2%}", margin=(0, 10)
        )
        row_bar = pn.indicators.Progress(
            max=100,
            value=int(class_likelihood * 100),
            sizing_mode="stretch_width",
            bar_color="secondary",
            margin=(0, 10),
        )
        row_column = pn.Column(row_label, row_bar)
        results_column.append(row_column)
    return results_column

# create widgets
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")

image_url = pn.widgets.TextInput(
    name="Image URL to classify",
    value="https://cdn2.thecatapi.com/images/cct.jpg",
)
class_names = pn.widgets.TextInput(
    name="Comma separated class names",
    placeholder="Enter possible class names, e.g. cat, dog",
    value="cat, dog, parrot",
)

input_widgets = pn.Column(
    "## 😊 Click randomize or paste a URL to start classifying!",
    pn.Row(image_url, randomize_url),
    class_names,
)

# add interactivity
randomize_url.on_click(set_random_url)
interactive_result = pn.panel(
        pn.bind(
        process_inputs, image_url=image_url, class_names=class_names
    ), loading_indicator=True
)

# create dashboard
main = pn.WidgetBox(
    input_widgets,
    interactive_result,
)

pn.template.BootstrapTemplate(
    title="Panel Image Classification Demo",
    main=main,
    main_max_width="min(50%, 698px)",
    header_background="#F08080",
).servable(title="Panel Image Classification Demo")