Spaces:
Running
Running
import panel as pn | |
import pandas as pd | |
import altair as alt | |
import hvplot.pandas | |
pn.extension("tabulator", "vega") | |
ACCENT="teal" | |
styles = { | |
"box-shadow": "rgba(50, 50, 93, 0.25) 0px 6px 12px -2px, rgba(0, 0, 0, 0.3) 0px 3px 7px -3px", | |
"border-radius": "4px", | |
"padding": "10px", | |
} | |
image = pn.pane.JPG("https://assets.holoviz.org/panel/tutorials/wind_turbines_sunset.png") | |
# Extract Data | |
# only download data once | |
def get_data(): | |
return pd.read_csv("https://assets.holoviz.org/panel/tutorials/turbines.csv.gz") | |
# Transform Data | |
source_data = get_data() | |
min_year = int(source_data["p_year"].min()) | |
max_year = int(source_data["p_year"].max()) | |
top_manufacturers = ( | |
source_data.groupby("t_manu").p_cap.sum().sort_values().iloc[-10:].index.to_list() | |
) | |
def filter_data(t_manu, year): | |
data = source_data[(source_data.t_manu == t_manu) & (source_data.p_year <= year)] | |
return data | |
# Filters | |
t_manu = pn.widgets.Select( | |
name="Manufacturer", | |
value="Vestas", | |
options=sorted(top_manufacturers), | |
description="The name of the manufacturer", | |
) | |
p_year = pn.widgets.IntSlider(name="Year", value=max_year, start=min_year, end=max_year) | |
# Transform Data 2 | |
df = pn.rx(filter_data)(t_manu=t_manu, year=p_year) | |
count = df.rx.len() | |
total_capacity = df.t_cap.sum() | |
avg_capacity = df.t_cap.mean() | |
avg_rotor_diameter = df.t_rd.mean() | |
# Plot Data | |
fig = ( | |
df[["p_year", "t_cap"]].groupby("p_year").sum() / 10**6 | |
).hvplot.bar( | |
title="Capacity Change", | |
rot=90, | |
ylabel="Capacity (MW)", | |
xlabel="Year", | |
xlim=(min_year, max_year), | |
color=ACCENT, | |
) | |
# Display Data | |
indicators = pn.FlexBox( | |
pn.indicators.Number( | |
value=count, name="Count", format="{value:,.0f}", styles=styles | |
), | |
pn.indicators.Number( | |
value=total_capacity / 1e6, | |
name="Total Capacity (TW)", | |
format="{value:,.1f}", | |
styles=styles, | |
), | |
pn.indicators.Number( | |
value=avg_capacity/1e3, | |
name="Avg. Capacity (MW)", | |
format="{value:,.1f}", | |
styles=styles, | |
), | |
pn.indicators.Number( | |
value=avg_rotor_diameter, | |
name="Avg. Rotor Diameter (m)", | |
format="{value:,.1f}", | |
styles=styles, | |
), | |
) | |
plot = pn.pane.HoloViews(fig, sizing_mode="stretch_both", name="Plot") | |
table = pn.widgets.Tabulator(df, sizing_mode="stretch_both", name="Table") | |
# Layout Data | |
tabs = pn.Tabs( | |
plot, table, styles=styles, sizing_mode="stretch_width", height=500, margin=10 | |
) | |
pn.template.FastListTemplate( | |
title="Wind Turbine Dashboard", | |
sidebar=[image, t_manu, p_year], | |
main=[pn.Column(indicators, tabs, sizing_mode="stretch_both")], | |
main_layout=None, | |
accent=ACCENT, | |
).servable() |